Tìm giá trị nhỏ nhất của biểu thức:
\(1-\frac{1}{x^2+x+1}\)
Tìm giá trị nhỏ nhất của biểu thức: (x+2)^2 + (y-3)^2 + 1
tìm giá trị lớn nhất của biểu thức: \(\frac{1}{\left(x-2\right)^2+2}\)
1 )Vì \(\left(x+2\right)^2\ge0;\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2+1\ge1\)
Dấu "=: xảy ra <=> \(\orbr{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\y=3\end{cases}}}\)
Vậy ........
2 ) \(\frac{1}{\left(x-2\right)^2+2}\ge\frac{1}{2}\)
Dấu "=" xảy ra <=> x = 2
Vậy ..........
a) Rút gọn rồi tìm giá trị của x để biểu thức: \(\frac{x^2}{x-2}.\left(\frac{x^2+4}{x}-4\right)+3\) có giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
b) Rút gọn rồi tìm giá trị của x để biểu thức: \(\frac{^{x^2}}{x-2}.\left(1-\frac{^{x^2}}{x+2}\right)-\frac{x^2+6x+4}{x}\)có giá trị lớn nhất. Tìm giá trị lớn nhất đo.
Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức: A=\(\frac{x^2+1}{x^2-x+1}\)
GTNN của A:
A=x2+1/x2-x+1=1+x/x2+1-x
=>A>1
suy ra:GTNN cùa A=2 với x=1
Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức \(\frac{x^2}{x^4+x^2+1}\)
+) Min: \(A=\frac{x^2}{x^4+x^2+1}\ge0\forall x\)
Dấu "=" <=> x=0
+) Max: \(1-3A=\frac{x^4-2x^2+1}{x^4+x^2+1}=\frac{\left(x^2-1\right)^2}{x^4+x^2+1}\ge0\)
\(\Rightarrow A\le\frac{1}{3}\)Dấu "=" <=> x= 1,-1
a) Tìm giá trị lớn nhất của biểu thức: A=\(\frac{3}{\left(x+2\right)^2+4}\)
b) Tìm giá trị nhỏ nhất của biểu thức: B=(x+1)2+(y+3)2+1
\(A=\frac{3}{\left(x+2\right)^2+4};\left(x+2\right)^2\in N\)
\(\Rightarrow A_{max}\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow\left(x+2\right)^2+4=4\)
\(\Rightarrow A_{max}=\frac{3}{4}\)
b, \(B=\left(x+1\right)^2+\left(y+3\right)^2+1\)
Mặt khác: \(\left(x+1\right)^2;\left(y+3\right)^2\in N\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2\ge0\)
\(\Rightarrow B_{min}\Leftrightarrow\left(x+1\right)^2+\left(y+3\right)^2=0\Rightarrow B_{min}=1\)
\(A=\frac{3}{\left(x+2\right)^2+4}\)
Để A max
=>(x+2)^2+4 min
Mà\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+4\ge4\)
Vậy Min = 4 <=>x=-2
Vậy Max A = 3/4 <=> x=-2
\(b,B=\left(x+1\right)^2+\left(y+3\right)^2+1\)
Có \(\left(x+1\right)^2\ge0;\left(y+3\right)^2\ge0\)
\(\Rightarrow B\ge0+0+1=1\)
Vậy MinB = 1<=>x=-1;y=-3
Cho biểu thức C=\(\frac{2\left(x-1\right)^2+1}{x^2-2x+3}\)
Với giá trị nàocủa x thì biểu thức C có giá trị nhỏ nhất . Tìm giá trị của biểu thức đó
\(C=\frac{2\left(x-1\right)^2+1}{x^2-2x+3}=\frac{2\left(x-1\right)^2+1}{\left(x^2-2x+1\right)+2}=\frac{2\left(x-1\right)^2+4-3}{\left(x-1\right)^2+2}=\frac{2\left[\left(x-1\right)^2+2\right]-3}{\left(x-1\right)^2+2}=2-\frac{3}{\left(x-1\right)^2+2}\)
Để \(2-\frac{3}{\left(x-1\right)^2+2}\) đạt GTNN <=> \(\left(x-1\right)^2+2\)đạt GTNN
\(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+2\ge2\) có GTNN là 2 tại x = 1
\(\Rightarrow B_{min}=2-\frac{3}{\left(1-1\right)^2+2}=\frac{1}{2}\) tại \(x=1\)
Bài 1:Tìm giá trị nhỏ nhất của biểu thức:
M=\(\frac{X^2+1}{X-1}\)với x>1
Bài 2: Tìm giá trị nhỏ nhất của biểu thức:
N=(x-1).(x+5).(\(x^2\)+4x+5)
Xin chân thành cảm ơn các bạn đã giúp đỡ mình !
b) \(M=\frac{x^2+1}{x-1}=\frac{x^2-1}{x-1}+\frac{2}{x-1}=\frac{\left(x-1\right)\left(x+1\right)}{x-1}+\frac{2}{x-1}=x+1+\frac{2}{x-1}\)
Áp dụng bđt Cô si cho 2 số dương ta được: \(x-1+\frac{2}{x-1}\ge2\sqrt{\left(x-1\right).\frac{2}{x-1}}=2\sqrt{2}\)
=>\(M=x+1+\frac{2}{x-1}\ge2\sqrt{2}+2\)
Dấu "=" xảy ra khi \(x=\sqrt{2}+1\)
c) \(N=\left(x-1\right)\left(x+5\right)\left(x^2+4x+5\right)=\left(x^2+4x-5\right)\left(x^2+4x+5\right)=\left(x^2+4x\right)^2-25\)
\(\left(x^2+4x\right)^2\ge0\Rightarrow\left(x^2+4x\right)^2-25\ge-25\)
Dấu "=" xảy ra khi (x2+4x)2=0 <=> x2+4x=0 <=> x(x+4)=0 <=> x=0 hoặc x=-4
Câu 1:Cho biết thức A = \(\frac{1}{x-1}\)+ \(\frac{4}{x^2-1}\)- \(\frac{2}{x^2-2x+1}\)
a/ Tìm điều kiện xác định của x để biểu thức A xác định
b/ Rút gọn A
Câu 2: Tìm giá trị nhỏ nhất của phân thức B=\(\frac{x^2-2}{x^2+1}\)
Tìm x để giá trị của biểu thức X2 + 2x -2 là nhỏ nhất
\(B=\frac{x^2-2}{x^2+1}=\frac{x^2+1-3}{x^2+1}=1-\frac{3}{x^2+1}\)
\(B_{min}\Rightarrow\left(\frac{3}{x^2+1}\right)_{max}\Rightarrow\left(x^2+1\right)_{min}\)
\(x^2+1\ge1\). dấu = xảy ra khi x2=0
=> x=0
Vậy \(B_{min}\Leftrightarrow x=0\)
ta có: \(x^2+2x-2=x^2+2x+1^2-3=\left(x+1\right)^2-3\ge-3\)
dấu = xảy ra khi \(x+1=0\)
\(\Rightarrow x=-1\)
Vậy\(\left(x^2+2x-2\right)_{min}\Leftrightarrow x=-1\)
Để A xác định
\(\Rightarrow\hept{\begin{cases}x-1\ne0\\x^2-1\ne0\\x^2-2x+1\ne0\end{cases}}\)
\(\Rightarrow x^2-1\ne0\)
\(\Rightarrow\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)
b,
a) Tìm giá trị nhỏ nhất của biểu thức A=5 (x-2)\(^2+1\)
b) Tìm giá trị lớn nhất của biểu thức B=4- \(\left(\frac{1}{2}-x\right)^2\)
a. A = 5.(x - 2)2 + 1
Ta có: (x - 2)2 \(\ge\)0 => 5.(x - 2)2 \(\ge\)0 => 5.(x - 2)2 + 1 \(\ge\)1
Do đó A có GTNN là 1
<=> x - 2 = 0
<=> x = 2
b. B = 4 - (1/2 - x)2
Ta có: (1/2 - x)2 \(\ge\)0
=> 4 - (1/2 - x)2 \(\le\)4
Do đó B có GTLN là 4
<=> 1/2 - x = 0
<=> x = 1/2
Tìm giá trị lớn nhất, nhỏ nhất của biểu thức: \(Q=\frac{x^2-x+1}{x^2+x+1}\)
\(Q=\frac{x^2-x+1}{x^2+x+1}=\frac{\frac{2}{3}x^2-\frac{4}{3}x+\frac{2}{3}}{x^2+x+1}+\frac{1}{3}=\frac{2}{3}\frac{\left(x-1\right)^2}{x^2+x+1}+\frac{1}{3}\ge\frac{1}{3}\)
\(\Rightarrow MIN\left(Q\right)=\frac{1}{3}\)Dấu "=" xảy ra khi x=1
\(Q=\frac{x^2-x+1}{x^2+x+1}=\frac{-2x^2-4x-2}{x^2+x+1}+3=-2\frac{\left(x+1\right)^2}{x^2+x+1}+3\ge3\)
\(\Rightarrow MAX\left(Q\right)=3\)Dấu "=" xảy ra khi x=-1
Viết lộn, \(Q\le3\)mới đúng