a^4-8: áp dụng hằng đẳng thức để đưa biểu thức viết dạng tíc
giúp tôi câu này với đang bí quá viết các biểu thức dưới dấu căn sâu về dạng (À+B) bình rồi áp dụng hằng đẳng thức căn A bình +trị tuyệt đối củaA \(\sqrt{7+4\sqrt{3}}\)
Gọi 1/4 số a là 0,25 . Ta có :
a . 3 - a . 0,25 = 147,07
a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )
a . 2,75 = 147,07
a = 147,07 : 2,75
a = 53,48
A=\(\sqrt{7+4\sqrt{3}}\) =\(\sqrt{2^2+2.2\sqrt{3}+\left(\sqrt{3}\right)^2}=\sqrt{\left(2+\sqrt{3}\right)^2}=2+\sqrt{3}\)
Bài 1; Đưa về dạng bình phương
a, 5*(x+2)*(x-2) - 1/2*(6-8x)^2 +17
Bài 2 tính nhanh( áp dụng hằng đẳng thức)
8^2 - 63,6 *21,8 +21,8
Để tính giá trị biểu thức 20212 – 212 theo phương pháp dùng hằng đẳng thức thì áp dụng hằng đẳng thức nào sau đây?
A. (A – B)2 = A2 – 2AB + B2
B. (A + B)2 = A2 + 2AB + B2
C. A2 – B2 = (A + B)(A – B)
D. A3 – B3 = (A – B)(A2 + AB + B2)
Đưa các biểu thức sau về dạng hằng đẳng thức :
a,4x^2-y^2+2y-1
b,x^2-9y^2+2x+2y+3 phần 8
\(a,4x^2-y^2+2y-1\)
\(=4x^2-\left(y^2-2y+1\right)\)
\(=\left(2x\right)^2-\left(y-1\right)^2\)
\(=\left(2x-y+1\right)\left(2x+y-1\right)\)
CMR: 3599 viết được dưới dạng tích của 2 số tự nhiên khác 1. [áp dụng hằng đẳng thức số 9 và 10]
3599=3600-1=602-1=(60-1)(60+1)
cho x-y=1. Tính giá trị biểu thức :
P=(x+y).(x^2+y^2).(x^4+y^4)-x^8+y^8+1
Gợi ý : Áp dụng hằng đẳng thức 3
(A+B).(A-B)=A^2-B^2
Các bạn hãy cho mình biết xy( 2xy - 6 ) + 3 ( 2xy - 6 ) = ?
------------các bạn hãy áp dụng hằng đẳng thức để làm BT này -----------------------------
cho biết 7 hằng đẳng thức đáng nhớ lớp 8 ?
Tính biểu thức sau bằng hai cách (áp dụng quy tắc nhân đa thức và áp dụng hằng đẳng thức đáng nhớ):
a) (a - b + c)2 ;
b) (a + b + c)(a + b - c)
a,
C1: (a - b + c)2 = (a - b + c) (a - b + c)
= a (a - b + c) - b (a - b + c) +c (a - b + c)
= a2 - ab + ac - ab + b2 - bc + ac - bc + c2
= a2 - 2ab + b2 + 2ac - 2bc + c2
C2: (a - b + c)2 = [ (a - b) + c ]2
= (a - b)2 + 2c (a - b) + c2
= a2 - 2ab + b2 + 2ac - 2bc + c2
b,
C1: (a + b + c)(a + b - c) = a (a + b - c) + b (a + b - c) + c (a + b - c)
= a2 + ab - ac + ab + b2 - bc + ac + bc - c2
= a2 + 2ab + b2 - c2
C2: (a + b + c)(a + b - c) = [ (a + b) + c ] [ ( a+ b) - c ]
= (a + b)2 - c2
= a2 + 2ab + b2 - c2
hok tốt ~
viết các biểu thức sau dưới dạng tổng áp dụng hằng đẳng thức đáng nhớ
(3+xy^2)^2
(a-b^2)(â+b^2)
(a^2+2a+3)(a^2+2a-3)
(a^2+2a+3)(a^2-2a-3)
giúp mik nha các bn