So sánh (áp dụng hằng đẳng thức)
\(A = \sqrt{1969} + \sqrt{1971} \) và \(B=2\sqrt{1970} \)
áp dụng hằng đẳng thức đáng nhớ tìm x biết:
(x+1)(x+2)-(x-3)^2=11
mấy bạn địa lượng giúp misha giải CHI TIẾT bài này với ,thanks mấy bạn nhiều ^^
1) Làm tính nhân
a) 𝑥.(𝑥2–5)
b) 3𝑥𝑦(𝑥2−2𝑥2𝑦+3)
c) (2𝑥−6)(3𝑥+6)
d) (𝑥+3𝑦)(𝑥2−𝑥𝑦)
2)Tính (áp dụng Hằng đẳng thức)
a) (2𝑥+5)(2𝑥−5)
b) (𝑥−3)^2
c) (4+3𝑥)^2
d) (𝑥−2𝑦)^3
e) (5𝑥+3𝑦)^3
f) (5−𝑥)(25+5𝑥+𝑥^2)
g) (2𝑦+𝑥)(4𝑦^2−2𝑥𝑦+𝑥^2)
3)Phân tích các đa thức sau thành nhân tử
a) 𝑥^2+2𝑥
b) 𝑥^2−6𝑥+9
c) 5(𝑥–𝑦)–𝑦(𝑦–𝑥)
d) 2𝑥−𝑦^2+2𝑥𝑦−𝑦
a) 6𝑥^3𝑦^4+12𝑥^2𝑦^3−18𝑥^3𝑦^2
Áp dụng hằng đẳng thức khai triển biểu thức sau:
a, \(\left(3x^2-2y^3\right)^2\)
b, \(\left(-2x^2-3\right)^2\)
Áp dụng hằng đẳng thức khai triển biểu thức sau:
a, \(\left(2x^2-1\right)^2\)
b, \(\left(\dfrac{1}{2}x+3y^2\right)^2\)
1) Làm tính nhân
a) 𝑥.(𝑥^2–5)
b) 3𝑥𝑦(𝑥^2−2𝑥^2𝑦+3)
c) (2𝑥−6)(3𝑥+6)
d) (𝑥+3𝑦)(𝑥^2−𝑥𝑦)
2)Tính (áp dụng Hằng đẳng thức)
a) (2𝑥+5)(2𝑥−5)
b) (𝑥−3)^2
c) (4+3𝑥)^2
d) (𝑥−2𝑦)^3
e) (5𝑥+3𝑦)^3
f) (5−𝑥)(25+5𝑥+𝑥^2)
g) (2𝑦+𝑥)(4𝑦^2−2𝑥𝑦+𝑥^2)
3)Phân tích các đa thức sau thành nhân tử
a) 𝑥^2+2𝑥
b) 𝑥^2−6𝑥+9
c) 5(𝑥–𝑦)–𝑦(𝑦–𝑥)
d) 2𝑥−𝑦^2+2𝑥𝑦−𝑦
a) 6𝑥^3𝑦^4+12𝑥^2𝑦^3−18𝑥^3𝑦^2
Cùng ôn tập lại HKI Toán 8.
Phần I: Đại số.
Chương I: Phép nhân và phép chia các đa thức.
Câu 1: Nêu quy tắc nhân đơn thức với đa thức, đa thức với đa thức?
Câu 2: Có bao nhiêu hằng đẳng thức đáng nhớ? Viết công thức?
Câu 3: Có bao nhiêu cách phân tích đa thức thành nhân tử (không nêu cách nâng cao)?
Câu 4: Nêu quy tắc chia đơn thức với đơn thức, đa thức với đơn thức?
Câu 5: Trong phép chia đa thức một biến đã sắp xếp, Q(x), R(x) được gọi là gì? Bậc của R(x) có mối quan hệ gì với bậc của Q(x)?
Áp dụng hằng đẳng thức, khai triển các biểu thức sau:
a, \(\left(2x+y+3\right)^2\)
b, \(\left(x-2y+1\right)^2\)
c, \(\left(x^2-2xy^2-3\right)^2\)
Áp dụng hằng đẳng thức đáng nhớ để thực hiện phép chia
a, (4x2 + 4xy + y2 ) : (2x+y)
b, (27x3+1) : (3x+1)
c, (x2 - 6xy + 9y2) : ( 3y-x)
d, (8x3-1) : (4x2+2x+1)