tìm m để hàm số \(y=\frac{mx+4}{x+m}\) nghịch biến trên khoảng \(\left(-\infty;1\right)\)
tìm các giá trị của m để hàm số
a) \(y=\dfrac{mx+25}{x+m}\) nghịch biến trên khoảng \(\left(-\infty;1\right)\)
b) \(y=\dfrac{x+2}{x+m}\) nghịch biến trên khoảng \(\left(-\infty;-5\right)\)
tìm m để hàm số \(y=\frac{mx+4}{x+m}\) nghịch biến trên khoảng \(\left(-\infty;1\right)\)
tìm m để hàm số \(y=\frac{mx+4}{x+m}\) nghịch biến trên khoảng \(\left(-\infty;1\right)\)
tìm m để hàm số \(y=\frac{mx+4}{x+m}\) nghịch biến trên khoảng \(\left(-\infty;1\right)\)
Lời giải:
Để hàm $y$ nghịch biến thì
\(y'=\frac{m^2-4}{(m+x)^2}<0\Leftrightarrow m^2-4<0\Leftrightarrow -2< m<2(1)\)
Mặt khác \(x\in(-\infty,1)\) nên để hàm số xác định, tức \(x+m\neq 0\Rightarrow m\neq (-1,+\infty)\), tức là \(m\leq -1(2) \)
Kết hợp \((1),(2)\Rightarrow -2 < m \leq -1\)
tìm m để hàm số \(y=\frac{mx+4}{x+m}\) nghịch biến trên khoảng \(\left(-\infty;1\right)\)
tìm m để hàm số \(y=\frac{mx+4}{x+m}\) nghịch biến trên khoảng \(\left(-\infty;1\right)\)
Hàm số \(y=\dfrac{mx+4}{x+m}\)có TXĐ: \(D=R\backslash\left\{-m\right\}\)
\(y'=\dfrac{m^2-4}{\left(x+m\right)^2}\)
Với \(m=\pm2\)thì \(y'=0,\forall x\ne\left\{-2;2\right\}\) hàm số đã cho trở thành hàm hằng.
Vậy hàm số nghịch biến khi\(y'< 0\Leftrightarrow m^2-4< 0\Leftrightarrow-2< m< 2\)
Khi đó hàm số nghịch biến trên các khoảng (−∞;−m)và (−m;+∞).
Để hàm số nghịch biến trên khoảng (−∞;1) thì \(1\le-m\Leftrightarrow m\le1\)
Vậy \(-2< m\le-1\) thỏa yêu cầu bài toán.
1) tìm khoảng đồng biến nghịch biến \(y=\dfrac{x^2-6x+10}{x-3}\)
2) hàm số \(y=\dfrac{mx-4}{x-m}\) đồng biến trên khoảng (0,\(+\infty\))
1: TXĐ: D=R\{3}
\(y=\dfrac{x^2-6x+10}{x-3}\)
=>\(y'=\dfrac{\left(x^2-6x+10\right)'\left(x-3\right)-\left(x^2-6x+10\right)\left(x-3\right)'}{\left(x-3\right)^2}\)
=>\(y'=\dfrac{\left(2x-6\right)\left(x-3\right)-\left(x^2-6x+10\right)}{\left(x-3\right)^2}\)
=>\(y'=\dfrac{2x^2-12x+18-x^2+6x-10}{\left(x-3\right)^2}\)
=>\(y'=\dfrac{x^2-6x+8}{\left(x-3\right)^2}\)
Đặt y'<=0
=>\(\dfrac{x^2-6x+8}{\left(x-3\right)^2}< =0\)
=>\(x^2-6x+8< =0\)
=>(x-2)(x-4)<=0
=>2<=x<=4
Vậy: Khoảng đồng biến là [2;3) và (3;4]
tìm m để hàm số \(y=\dfrac{mx^3}{3}+7mx^2+14x-m+2\) nghịch biến trên \(\left(1;+\infty\right)\)
\(y'=mx^2+14mx+14\)
- Với \(m=0\Rightarrow y'=14>0\) hàm đồng biến trên R (ktm)
- Với \(m\ne0\) bài toán thỏa mãn khi với mọi \(x>1\) ta có:
\(mx^2+14mx+14\le0\)
\(\Leftrightarrow m\left(x^2+14x\right)\le-14\)
\(\Leftrightarrow m\le\dfrac{-14}{x^2+14}\)
\(\Leftrightarrow m\le\min\limits_{x>1}\dfrac{-14}{x^2+14}\)
Xét hàm \(f\left(x\right)=\dfrac{-14}{x^2+14}\) với \(x>1\)
\(f'\left(x\right)=\dfrac{28\left(x+7\right)}{\left(x^2+14x\right)^2}>0\Rightarrow f\left(x\right)\) đồng biến
\(\Rightarrow f\left(x\right)>f\left(1\right)=-\dfrac{14}{15}\Rightarrow m\le-\dfrac{14}{15}\)
Xác định m để hàm số sau :
a) \(y=\dfrac{mx-4}{x-m}\) đồng biến trên từng khoảng xác định
b) \(y=\dfrac{-mx-5m+4}{x+m}\) nghịch biến trên từng khoảng xác định
c) \(y=-x^3+mx^2-3x+4\) nghịch biến trên \(\left(-\infty;+\infty\right)\)
d) \(y=x^3-2mx^2+12x-7\) đồng biến trên \(\mathbb{R}\)
a) Tập xác định: D = R\{m}
Hàm số đồng biến trên từng khoảng (−∞;m),(m;+∞)(−∞;m),(m;+∞)khi và chỉ khi:
y′=−m2+4(x−m)2>0⇔−m2+4>0⇔m2<4⇔−2<m<2y′=−m2+4(x−m)2>0⇔−m2+4>0⇔m2<4⇔−2<m<2
b) Tập xác định: D = R\{m}
Hàm số nghịch biến trên từng khoảng khi và chỉ khi:
y′=−m2+5m−4(x+m)2<0⇔−m2+5m−4<0y′=−m2+5m−4(x+m)2<0⇔−m2+5m−4<0
[m<1m>4[m<1m>4
c) Tập xác định: D = R
Hàm số nghịch biến trên R khi và chỉ khi:
y′=−3x2+2mx−3≤0⇔′=m2−9≤0⇔m2≤9⇔−3≤m≤3y′=−3x2+2mx−3≤0⇔′=m2−9≤0⇔m2≤9⇔−3≤m≤3
d) Tập xác định: D = R
Hàm số đồng biến trên R khi và chỉ khi:
y′=3x2−4mx+12≥0⇔′=4m2−36≤0⇔m2≤9⇔−3≤m≤3