Cho a+b=1. Chứng minh: \(\frac{1}{ab}+\frac{1}{a^2+b^2}\ge6\)
Cho a+b > 0 và a+b=1
Chứng minh: \(\frac{1}{ab}+\frac{1}{a^2+b^2}\ge6\)
\(\frac{1}{ab}+\frac{1}{a^2+b^2}=\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{1}{2ab}\)
Ta có : \(\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge\frac{4}{\left(a+b\right)^2}=4\)
\(\frac{1}{2ab}\ge\frac{2}{\left(a+b\right)^2}=2\)
\(\Rightarrow\frac{1}{ab}+\frac{1}{a^2+b^2}\ge4+2=6\)
Cho a, b>0 và a+b=1. Chứng minh rằng:
a) \(\frac{1}{ab}+\frac{1}{a^2+b^2}\ge6\)
b)\(\frac{2}{ab}+\frac{3}{a^2+b^2}\ge9\)
Cho các cặp số dương a,b thỏa mãn a+b=1 . Chứng minh:
a, \(\frac{1}{ab}+\frac{1}{a^2+b^2}\ge6\)
b, \(\frac{2}{ab}+\frac{3}{a^2+b^2}\ge14\)
câu a)
đặt A= vế trái
=>A=1/2ab+1/2ab+1/(a2+b2) (3)
(a+b)2>=4ab (tự cm)
=>1>=4ab
hay 4ab <=1
=>2ab<=1/2
=>1/2ab>=2 (1)
sau đó áp dụng BĐT:1/x+1/y >= 4/(x+y) ta đc :
1/2ab+1/(a2+b2) >= 4/(a+b)2=4/1=4 (2)
từ (1),(2),(3)=>dpcm
Chứng minh với a,b>0 thỏa mãn a+b=1 thì
\(\frac{1}{ab}+\frac{1}{a^2+b^2}\ge6\)
Áp dụng bđt ngược chiều là ra
\(\frac{1}{ab}+\frac{1}{a^2+b^2}=\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge\frac{4}{2ab+a^2+b^2}+\frac{1}{2\left(\frac{a+b}{2}\right)^2}=\frac{4}{\left(a+b\right)^2}+2=6\)
hmm... nếu mà xét dấu bằng thì tại a=b=1/2
Cho a,b > 0 và a+b=1
Chứng minh: \(\frac{1}{ab}+\frac{1}{a^2+b^2}\ge6\)
Help me :)))))))))) Mình cần gấp
\(\frac{1}{ab}+\frac{1}{a^2+b^2}=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}\ge\frac{1}{2ab}+\frac{4}{a^2+2ab+b^2}\)
\(\ge\frac{1}{\frac{\left(a+b\right)^2}{2}}+\frac{4}{\left(a+b\right)^2}=\frac{2}{1}+\frac{4}{1}=6\)
1) Cho a, b, c nguyên thỏa mãn: \(a^2+b^2=c^2\left(1+ab\right)\). Chứng minh rằng: \(a\ge c;b\ge c\)
2) Cho a, b, c dương và \(a+b+c\ge abc\). Chứng minh rằng: \(a^2+b^2+c^2\ge abc\)
3) Cho a, b, c dương và \(a+b+c\ge abc\). Chứng minh rằng ít nhất hai bất đẳng thức trong các bất đẳng thức sau là sai:
\(\frac{2}{a}+\frac{3}{b}+\frac{6}{c}\ge6\); \(\frac{2}{b}+\frac{3}{c}+\frac{6}{a}\ge6\); \(\frac{2}{c}+\frac{3}{a}+\frac{6}{b}\ge6\)
bài 2
(bài này là đề thi olympic Toán,Ireland 1997),nhưng cũng dễ thôi
Giả sử ngược lại \(a^2+b^2+c^2< abc\)
khi đó \(abc>a^2+b^2+c^2>a^2\)nên \(a< bc\)
Tương tự \(b< ac,c< ab\)
Từ đó suy ra :\(a+b+c< ab+bc+ac\left(1\right)\)
mặt khác ta lại có:\(a^2+b^2+c^2\ge ab+bc+ac\)nên
\(abc>a^2+b^2+c^2\ge ab+bc+ac\)
\(\Rightarrow abc>ab+ac+bc\left(2\right)\)
Từ (1),(2) ta có\(abc>a+b+c\)(trái với giả thuyết)
Vậy bài toán được chứng minh
3)để đơn giản ta đặt \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\).Khi đó \(x,y,z>0\)
và \(xy+yz+xz\ge1\)
ta phải chứng minh có ít nhất hai trong ba bất đẳng thức sau đúng
\(2x+3y+6z\ge6,2y+3z+6x\ge6,2z+3x+6y\ge6\)
Giả sử khẳng định này sai,tức là có ít nhất hai trong ba bất đẳng thức trên sai.Không mất tính tổng quát,ta giả sử
\(2x+3y+6z< 6\)và \(2y+3z+6x< 6\)
Cộng hai bất đẳng thức này lại,ta được:\(8x+5y+9z< 12\)
Từ giả thiết \(xy+yz+xz\ge1\Rightarrow x\left(y+z\right)\ge1-yz\)
\(\Rightarrow x\ge\frac{1-yz}{y+z}\)Do đó
\(8\frac{1-yz}{y+z}+5y+9z< 12\Leftrightarrow8\left(1-yz\right)+\left(5y+9z\right)\left(y+z\right)< 12\left(y+z\right)\)
\(\Leftrightarrow5y^2+6yz+9z^2-12y-12z+8< 0\)
\(\Leftrightarrow\left(y+3z-2\right)^2+4\left(y-1\right)^2< 0\)(vô lý)
mâu thuẫn này chứng tỏ khẳng định bài toán đúng.Phép chứng minh hoàn tất.
Cho a,b > 0 và a+b=1
Chứng minh: \(\frac{1}{ab}+\frac{1}{a^2+b^2}\ge6\)
Help me Giải thích rỏ 1 chút nhé tks nhiều
Cho a,b>0 và a2 +b2 =1/2.Chứng minh \(\frac{1}{1-2ab}+\frac{1}{a}+\frac{1}{b}\ge6\)
Không mất tính tổng quát ta giả sử: \(a\ge b\)
Nếu \(a\ge b>\frac{1}{2}\Rightarrow a^2\ge b^2>\frac{1}{4}\Rightarrow a^2+b^2>\frac{1}{2}\)(loại)
Nếu \(\frac{1}{2}>a\ge b\Rightarrow\frac{1}{4}>a^2\ge b^2\Rightarrow a^2+b^2< \frac{1}{2}\)(loại)
Vậy chỉ còn trường hợp: \(a\ge\frac{1}{2}\ge b\)
\(\Rightarrow\hept{\begin{cases}a-\frac{1}{2}\ge0\\b-\frac{1}{2}\le0\end{cases}}\)
Nhân vế theo vế ta được
\(\left(a-\frac{1}{2}\right)\left(b-\frac{1}{2}\right)\le0\)
\(\Leftrightarrow ab-\frac{a+b}{2}+\frac{1}{4}\le0\)
\(\Leftrightarrow a+b\ge2ab+\frac{1}{2}\)
Từ bài toán ta có
\(\frac{1}{1-2ab}+\frac{1}{a}+\frac{1}{b}=\frac{1}{1-2ab}+\frac{a+b}{ab}\)
\(\ge\frac{1}{1-2ab}+\frac{2ab+\frac{1}{2}}{ab}=\frac{1}{1-2ab}+\frac{1}{2ab}+2\)
\(\ge\frac{\left(1+1\right)^2}{1-2ab+2ab}+2=4+2=6\)
Dấu = xảy ra khi \(a=b=\frac{1}{2}\)
a2+b2=\(\frac{1}{2}\)
xét a;b<\(\frac{1}{2}\)thì a2+b2<\(\frac{1}{2}\)
=>1 trong 2 số phải \(\ge\frac{1}{2}\)
giả sử a\(\le b\)=>\(\left(a-\frac{1}{2}\right)\left(b-\frac{1}{2}\right)\le0\)
\(\Leftrightarrow2ab+\frac{1}{2}\le a+b\)
mà \(a^2+b^2=\frac{1}{2}\Rightarrow\frac{1}{2}\ge2ab\Rightarrow1-2ab>0\)
\(\frac{1}{1-2ab}+\frac{1}{a}+\frac{1}{b}=\frac{1}{1-2ab}+\frac{a+b}{ab}\ge\frac{1}{1-2ab}+\frac{2ab+\frac{1}{2}}{ab}\)
\(=\frac{1}{1-2ab}+\frac{1}{2ab}+2\ge\frac{4}{1-2ab+2ab}+2=4+2=6\)
Dấu = xảy ra khi \(a=b=\frac{1}{2}\)
Cho các số thực dương a,b thỏa mãn điều kiện ab = 1. Chứng minh rằng:
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a-b\right)^2}\ge6\)
P/s: Mong ko có cách giải SOS, Có cách Cô - si, Bunhia ,.. giúp với
Em mới vừa nghĩ ra cách khác )):
\(VT=\frac{a^2+b^2}{a^2b^2}+\frac{4}{a^2-2ab+b^2}=a^2+b^2+\frac{4}{a^2+b^2-2}\)
\(=a^2+b^2-2+\frac{4}{a^2+b^2-2}+2\)
\(\ge2\sqrt{\left(a^2+b^2-2\right).\frac{4}{a^2+b^2-2}}+2=6\)
Bài này sai đề nhé! Thử: \(\left(a;b\right)=\left(\frac{\sqrt{5}-1}{2},\frac{2}{\sqrt{5}-1}\right)\rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a-b\right)^2}=4< 6\)
Và 4 cũng là min biểu thức trên!