Giá trị a thoã mãn
\(\frac{a}{3}=\frac{2a+2}{5}\)
số a thoã mãn
\(\frac{a}{3}=\frac{2a+2}{5}\)
\(\frac{a}{3}=\frac{2a+2}{5}\)
\(\Rightarrow5a=3.\left(2a+2\right)\)
\(\Rightarrow5a=6a+6\)
\(\Rightarrow5a-6a=6\)
\(\Rightarrow a=-6\)
\(\frac{a}{3}=\frac{2a+2}{5}\Rightarrow5a=3\left(2a+2\right)\Rightarrow5a=6a+10\Rightarrow a=6\)
sory mk giải nhầm
\(\frac{a}{3}=\frac{2a+2}{5}\Rightarrow\frac{5a}{15}=\frac{6a+6}{15}\Rightarrow5a=6a+6\Rightarrow6=5a-6a\Rightarrow a=-6\)
Vậy a=-6
cho 2 số a,b thoã mãn\(\frac{a}{b}=\frac{-4}{5}\)và a2+2b2=16,5
giá trị lớn nhất của a+b là :
a/b=-4/5
nên a/-4=b/5
Đặt a/-4=b/5=k
=>a=-4k; b=5k
\(a^2+2b^2=16.5\)
\(\Leftrightarrow16k^2+50k^2=16.5\)
\(\Leftrightarrow k^2=\dfrac{1}{4}\)
Trường hợp 1: k=1/2
=>a=-2; b=5/2
=>a+b=1/2
Trường hợp 2: k=-1/2
=>a=2; b=-5/2
=>a+b=-1/2
Vậy: Giá trị lớn nhất của a+b là 1/2
giá trị x thoã mãn:
\(\frac{x}{2}+\frac{x}{4}+\frac{x}{2016}=\frac{x}{3}+\frac{x}{5}+\frac{x}{2017}\) là x =...
\(\frac{x}{2}+\frac{x}{4}+\frac{x}{2016}=\frac{x}{3}+\frac{x}{5}+\frac{x}{2017}\)
\(\Rightarrow x.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{2016}\right)=x.\left(\frac{1}{3}+\frac{1}{5}+\frac{1}{2017}\right)\)
Vì \(\frac{1}{2}>\frac{1}{3};\frac{1}{4}>\frac{1}{5};\frac{1}{2016}>\frac{1}{2017}\)
\(\Rightarrow\frac{1}{2}+\frac{1}{4}+\frac{1}{2016}>\frac{1}{3}+\frac{1}{5}+\frac{1}{2017}\)
=> x = 0
Vậy x = 0
\(\frac{x}{2}+\frac{x}{4}+\frac{x}{2016}=\frac{x}{3}+\frac{x}{5}+\frac{x}{2017}\)
\(\Rightarrow\frac{x}{2}+\frac{x}{4}+\frac{x}{2016}-\frac{x}{3}-\frac{x}{5}-\frac{x}{2017}=0\)
\(\Rightarrow x\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{2016}-\frac{1}{3}-\frac{1}{5}-\frac{1}{2017}\right)=0\)
\(\Rightarrow x=0\).Do \(\frac{1}{2}+\frac{1}{4}+\frac{1}{2016}-\frac{1}{3}-\frac{1}{5}-\frac{1}{2017}\ne0\)
Vậy x=0
1/Số cặp số tự nhiên (a;b) thoã mãn : a/2+b/3=a+b/5
Số cặp số tự nhiên (x;y) thoã mãn \(\frac{3}{x}+\frac{y}{3}=\frac{5}{6}\)là......cặp
= 6 cặp
mk làm trong violympic rùi tin mk đi
Giá trị x thoã mãn \(\frac{2x+2}{5x-3}\)=\(\frac{2x+12}{5x+18}\)
cho ba số a,b,c khác 0 và không đòng thời bằng nhau, thoã mãn \(a^3+b^3+c^3=3abc\).tính giá trị biểu thức
P=\(\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}\)
a3+b3+c3=3abc
<=>(a+b)3-3ab(a+b)-3abc+c3=0
<=>(a+b+c)[(a+b)2-(a+b)c+c2]-3ab.(a+b+c)=0
<=>(a+b+c)(a2+b2+c2-ab-bc-ac)=0
<=>(a+b+c)(2a2+2b2+2c2-2ab-2bc-2ac)=0
<=>(a+b+c)[(a-b)2+(b-c)2+(c-a)2]=0
<=>a+b+c=0 [(a-b)2+(b-c)2+(c-a)2 khác 0]
=>a2+b2-c2=-2ab;b2+c2-a2=-2bc;c2+a2-b2=-2ac
Suy ra : P=\(-\left(\dfrac{1}{2ab}+\dfrac{1}{2bc}+\dfrac{1}{2ac}\right)=-\dfrac{a+b+c}{2abc}=0\)
Cho B = \(\left(\frac{1-x^3}{1-x}-x\right):\frac{1-x^2}{1-x-x^2+x^3}\)
a)Rút gọn B
b)Tìm giá trị của x để B<0
c)Tìm giá trị của B để x thoã mãn : \(x-4=5\)
\(ĐKXĐ:x\ne\pm1\)
a) \(B=\left(\frac{1-x^3}{1-x}-x\right)\div\frac{1-x^2}{1-x-x^2+x^3}\)
\(\Leftrightarrow B=\left(\frac{\left(1-x\right)\left(1+x+x^2\right)}{1-x}-x\right):\left(\frac{\left(1-x\right)\left(1+x\right)}{\left(x-1\right)^2\left(x+1\right)}\right)\)
\(\Leftrightarrow B=\left(1+x+x^2-x\right):\left(\frac{-1}{x-1}\right)\)
\(\Leftrightarrow B=-\left(x^2+1\right).\left(x-1\right)\)
\(\Leftrightarrow B=-x^3+x^2-x+1\)
b) Để B < 0
\(\Leftrightarrow-x^3+x^2-x+1< 0\)
\(\Leftrightarrow-\left(x^2+1\right)\left(x-1\right)< 0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x-1\right)>0\)
TH1 : \(\hept{\begin{cases}x^2+1>0\left(tm\right)\\x-1>0\end{cases}\Leftrightarrow x>1}\)
TH2 : \(\hept{\begin{cases}x^2+1< 0\left(ktm\right)\\x-1< 0\end{cases}}\Leftrightarrow x\in\varnothing\)
Vậy để \(B< 0\Leftrightarrow x>1\)
c) Khi \(x-4=5\)
\(\Leftrightarrow x=9\)
\(\Leftrightarrow B=-\left(9^3\right)+9^2-9+1\)
\(\Leftrightarrow B=-729+81-9+1\)
\(\Leftrightarrow B=-656\)
Vậy khi \(x-4=5\Leftrightarrow B=-656\)
Cho a, b, c là các số thỏa mãn điều kiện : \(\frac{2a-b}{a+b}=\frac{b-c+a}{2a-b}=\frac{2}{3}\). Khi đó giá trị của biểu thức P = \(\frac{\left(5b+4a\right)^5}{\left(5b+4c\right)^2.\left(a+3c\right)^3}\)là
Lớp 7 gì mà dễ ẹc :))
\(\frac{2a-b}{a+b}=\frac{2}{3}\)
\(\Leftrightarrow6a-3b=2a+2b\)
\(\Rightarrow4a=5b\)
\(\frac{b-c+a}{2a-b}=\frac{2}{3}\)
\(\Leftrightarrow4a-2b=3b-3c+3a\)
\(\Leftrightarrow a=5b-3c\)
\(\Leftrightarrow a-5b=-3c\)
\(\Leftrightarrow a-4a=-3c\)
\(\Leftrightarrow-3a=-3c\)
\(\Rightarrow a=c\)
Ta có : \(P=\frac{\left(5b+4a\right)^5}{\left(5b+4c\right)^2\left(a+3c\right)^3}=\frac{\left(4a+4a\right)^5}{\left(4a+4a\right)^2\left(a+3a\right)^3}=\frac{\left(8a\right)^3}{\left(4a\right)^3}=8\)
Cho các số a,b,c thỏa mãn điều kiện \(\frac{2a-b}{a+b}=\frac{b-c+a}{2a-b}=\frac{2}{3}\)
Khi đó giá trị biểu thức \(P=\frac{\left(5b+4a\right)^5}{\left(5b+4c\right)^2.\left(a+3c\right)^3}\)