\(\left[{}\begin{matrix}13123\\435\\12432\\65467556\end{matrix}\right.\)
hãy tính kết quả
Giải các hệ phương trình sau bằng máy tính bỏ túi (làm tròn kết quả dến chữ số thập phân thứ hai)
a. \(\left\{{}\begin{matrix}3x-5y=6\\4x+7y=-8\end{matrix}\right.\)
b. \(\left\{{}\begin{matrix}-2x+3y=5\\5x+2y=4\end{matrix}\right.\)
c. \(\left\{{}\begin{matrix}2x-3y+4z=-5\\-4x+5y-z=6\\3x+4y-3z=7\end{matrix}\right.\)
d. \(\left\{{}\begin{matrix}-x+2y-3z=2\\2x+y+2z=-3\\-2x-3y+z=5\end{matrix}\right.\)
a. \(\left\{{}\begin{matrix}3x-5y=6\\4x+7y=-8\end{matrix}\right.\)
\(x=\dfrac{2}{41}\) ; \(y=\dfrac{-48}{41}\)
b. \(\left\{{}\begin{matrix}\text{−2x+3y=5}\\5x+2y=4\end{matrix}\right.\)
\(x=\dfrac{2}{19};y=\dfrac{33}{19}\)
c.\(\left\{{}\begin{matrix}\text{2x−3y+4z=−5}\\-4x+5y-z=6\\3x+4y-3z=7\end{matrix}\right.\)
\(x=\dfrac{22}{101};y=\dfrac{131}{101};z=\dfrac{-39}{101}\)
d. \(\left\{{}\begin{matrix}\text{− x + 2 y − 3 z = 2}\\2x+y+2z=-3\\-2x-3y+z=5\end{matrix}\right.\)
\(x=-4;y=\dfrac{11}{7};z=\dfrac{12}{7}\)
a)x=0,05 ; y=-1,17
b.x=0,11 ; y=1,74
c.x=0,22 ;y=1,29 z=-0.39
d.x=-4 y=1,57 z=1,71
a,\(\left\{{}\begin{matrix}3x-5y=6\\4x+7y=-8\end{matrix}\right.\)
x=\(\dfrac{2}{41}=0,05\) ; y=\(\dfrac{-48}{41}=-1,17\)
b,\(\left\{{}\begin{matrix}-2x+3y=5\\5x+2y=4\end{matrix}\right.\)
x=\(\dfrac{2}{19}=0,11\) ; y=\(\dfrac{33}{19}=1,74\)
c,\(\left\{{}\begin{matrix}2x-3y+4z=-5\\-4x+5y-z=6\\3x+4y-3z=2\end{matrix}\right.\)
x=\(\dfrac{22}{101}=0,22\) ;y=\(\dfrac{131}{101}=1,29\) ; z=\(\dfrac{-39}{101}=-0,39\)
d,\(\left\{{}\begin{matrix}-x+2y-3z=2\\2x+y+2z=-3\\-2x-3y+z=5\end{matrix}\right.\)
x=\(-4\) ; y=\(\dfrac{11}{7}=1,57\) ; z=\(\dfrac{12}{7}=1,71\)
bằng trục số hãy tìm x thỏa mãn:
1.\(\left\{{}\begin{matrix}x< 5\\\left[{}\begin{matrix}x< -2\\x>1\end{matrix}\right.\end{matrix}\right.\)
2.\(\left\{{}\begin{matrix}x>0\\\left[{}\begin{matrix}x>1\\x< 0\end{matrix}\right.\end{matrix}\right.\)
3.\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x>1\\x< 5\end{matrix}\right.\\x< -2\\\end{matrix}\right.\)
4.\(\left[{}\begin{matrix}x>2\\\left\{{}\begin{matrix}x< 5\\x>-2\end{matrix}\right.\\\end{matrix}\right.\)
1: \(x\in\left(1;5\right)\cup\left(-\infty;-2\right)\)
2: x>1
4: \(x\in\left(-2;+\infty\right)\)
Giải hệ phương trình
\(\left\{{}\begin{matrix}x^2+y^2+xy=13\\x^4+y^4+x^2y^2=91\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-xy=13\\\left(x^2+y^2\right)^2-\left(xy\right)^2=91\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2=13+xy\\\left[\left(x+y\right)^2-2xy\right]^2-\left(xy\right)^2=91\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-xy=13\\\left(13-xy\right)^2-\left(xy\right)^2=91\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy=3\\\left(x+y\right)^2=16\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=4\\xy=3\end{matrix}\right.\) hoặc x+y = -4
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y=4\\xy=3\end{matrix}\right.\\\left\{{}\begin{matrix}x+y=-4\\xy=3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=-3\\y=-1\end{matrix}\right.\end{matrix}\right.\)hoặc \(\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)hoặc \(\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\)
Mọi người có thể giải thích từ dấu tương đương thứ 3 xuống 4. tại sao lại như vậy k?
Thu gọn các hệ điều kiện sau:
a/ \(\left\{{}\begin{matrix}x\in(-1;3]\\x\in\left(-\infty;2\right)\cup\left(4;+\infty\right)\end{matrix}\right.\)
b/\(\left\{{}\begin{matrix}8\le x\le30\\\left[{}\begin{matrix}x< 10\\x\ge25\end{matrix}\right.\end{matrix}\right.\)
c/\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x< -2\\x>4\end{matrix}\right.\\\left[{}\begin{matrix}x< -5\\x\ge7\end{matrix}\right.\end{matrix}\right.\)
a: \(x\in\left(-1;2\right)\)
b: \(x\in[8;10)\cup\left[25;30\right]\)
c: \(x\in\left(-\infty;-5\right)\cup[7;+\infty)\)
Trên quả Địa Cầu, hãy tìm các điểm có toạ độ địa lí sau:
\(\left\{{}\begin{matrix}80^{\text{o}}\text{Đ}\\30^{\text{o}}N\end{matrix}\right.\)
\(\left\{{}\begin{matrix}60^{\text{o}}T\\40^{\text{o}}N\end{matrix}\right.\)
Trên quả Địa cầu, các điểm có toạ độ địa lí:
\(\left\{{}\begin{matrix}80^0Đ\\30^0N\end{matrix}\right.\) là toạ độ của một địa điểm ở giữa Ấn Độ Dương.
\(\left\{{}\begin{matrix}60^0T\\40^0N\end{matrix}\right.\) là toạ độ của một địa điểm thuộc vùng biển phía Đông Ác-hen-ti-na.
\(\left\{{}\begin{matrix}x+y=19\\xy+6x=150\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=19-y\\x\left(y+6\right)=150\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=19-y\\\left(19-y\right)\left(y+6\right)=150\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}x=19-9=10\\y=9\end{matrix}\right.\)
Cho biết tình hình nông nghiệp của các nước châu Á
a)Trồng trọt : - Cây lương thực \(\left\{{}\begin{matrix}\\\\\end{matrix}\right.\)
- Cây công nghiệp\(\left\{{}\begin{matrix}\\\\\\\end{matrix}\right.\)
- Cây ăn quả và cây khác\(\left\{{}\begin{matrix}\\\\\end{matrix}\right.\)
b) Chăn nuôi : - Gia súc lớn\(\left\{{}\begin{matrix}\\\\\\\end{matrix}\right.\)
- Gia súc nhỏ\(\left\{{}\begin{matrix}\\\\\\\end{matrix}\right.\)
- Gia cầm\(\left\{{}\begin{matrix}\\\\\\\end{matrix}\right.\)
Giải các hệ phương trình sau và minh họa hình học kết quả tìm được:
a) \(\left\{{}\begin{matrix}2x+5y=2\\\dfrac{2}{5}x+y=1\end{matrix}\right.;\)
b) \(\left\{{}\begin{matrix}0,2x+0,1y=0,3\\3x+y=5\end{matrix}\right.;\)
c) \(\left\{{}\begin{matrix}\dfrac{3}{2}x-y=\dfrac{1}{2}\\3x-2y=1\end{matrix}\right..\)
a) Giải hệ phương trình:
{2x+5y=2(1)25x+y=1(2)⇔{2x+5y=2(1′)−2x−5y=−5(2′){2x+5y=2(1)25x+y=1(2)⇔{2x+5y=2(1′)−2x−5y=−5(2′)
Cộng (1’) với (2’) vế theo vế, ta được: 0x + 0y = -3
Phương trình này vô nghiệm. Vậy hệ đã cho vô nghiệm.
Minh họa hình học kết quả tìm được:
- Vẽ đồ thị hàm số 2x + 5y = 2.
Cho y = 0 ⇒ x = 1. Ta xác định được điểm A(1; 0)
Cho y = 1 ⇒ x = -1,5. Ta xác định được điểm B(-1,5; 1).
Đồ thị hàm số là đường thẳng đi qua hai điểm A và B
-Vẽ đồ thị hàm số 25x+y=1⇔2x+5y=525x+y=1⇔2x+5y=5
Cho x = 0 ⇒ y = 1. Ta xác định được điểm C(0; 1)
Cho y = 2 ⇒ x = -2,5. Ta xác định được điểm D(-2,5; 2)
Đồ thị hàm số là đường thẳng đi qua hai điểm C và D.
Kết luận: Đồ thị hai hàm số trên song song. Điều này chứng tỏ rằng hệ phương trình vô nghiệm.
b) Giải hệ phương trình:
{0,2x+0,1y=0,3(1)3x+y=5(2)⇔{−2x−y=−3(1′)3x+y=5(2′){0,2x+0,1y=0,3(1)3x+y=5(2)⇔{−2x−y=−3(1′)3x+y=5(2′)
Cộng (1’) với (2’) vế theo vế, ta được x = 2
Thế x = 2 vào (2), ta được: 6 + y = 5 ⇔ y = -1
Vậy nghiệm của hệ phương trình là (x = 2; y = -1)
Minh họa hình học:
- Đồ thị hàm số 0,2x + 0,1y = 0,3 là một đường thẳng đi qua hai điểm:
A(x = 0; y = 3) và B(x = 1,5; y = 0)
- Đồ thị hàm số 3x + y = 5 là một đường thẳng đi qua hai điểm C(x = 0; y = 5) và D(x = 1; y = 2)
- Đồ thị hai hàm số trên cắt nhau tại điểm: M(x = 2; y = -1).
Vậy (2; -1) là một nghiệm của hệ phương trình.
c) Giải hệ phương trình:
{32x−y=12(1)3x−2y=1(2)⇔{−3x+2y=−1(1′)3x−2y=1(2′){32x−y=12(1)3x−2y=1(2)⇔{−3x+2y=−1(1′)3x−2y=1(2′)
Cộng (1’) và (2’) vế theo vế, ta có: 0x + 0y = 0.
Phương trình này có vô số nghiệm.
Nghiệm tổng quát là (x;32x−12)(x;32x−12) với x ∈ R
Minh họa hình học
- Đồ thị hàm số (1) là đường thẳng đi qua hai điểm A(0; −12−12) và B(1;1) nên hai đường thẳng này trùng nhau. Vậy hệ phương trinh có vô số nghiệm.
tính số hạng đầu \(u_1\) và công sai d của 1 cấp số cộng biết
a) \(\left\{{}\begin{matrix}u_4=4\\u_6=8\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}u_1-u_3+u_5=10\\u_1+u_6=17\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}u_1+u_2=5\\u_3u_5=91\end{matrix}\right.\)
a: u4=4 và u6=8
=>u1+3d=4 và u1+5d=8
=>-2d=-4 và u1+3d=4
=>d=2 và u1=4-3d=-2
b: u1-u3+u5=10 và u1+u6=17
=>u1-u1-2d+u1+4d=10 và u1+u1+5d=17
=>u1+2d=10 và 2u1+5d=17
=>u1=16 và d=-3
c: u1+u2=5 và u3*u5=91
=>u1+u1+d=5 và (u1+2d)(u1+4d)=91
=>2u1+d=5 và (u1+2d)(u1+4d)=91
=>d=5-2u1 và (u1+10-4u1)(u1+20-8u1)=91
=>d=5-2u1 và (-3u1+10)(-7u1+20)=91
(-3u1+10)(-7u1+20)=91
=>21u1^2-60u1-70u1+200=91
=>21u1^2-130u1+109=0
=>u1=1 hoặc u1=109/21
Khi u1=1 thì d=5-2u1=5-2=3
Khi u1=109/21 thì d=5-2u1=5-218/21=-113/21