Tam giác ABC có góc B = 2 góc C < 90 độ . Kẻ AH vuông góc BC. Trên tia AB lấy D : AD = HC. Chứng minh DH đi qua trung điểm của AC
cho tam giác ABC có B=2C<90..........AH vuông góc BC tai H . Trên AB lấy D sao cho AD=HC ...chứng minh DH đi qua trung điểm AC
Cho tam giác ABC có B = 2*C <90 độ, kẻ AH vuông góc với BC. Trên tia AB lấy D sao cho AD = HC , CMR đường thẳng DH cắt AC tại trung điểm của AC.
Cho tam giác abc , góc B = 2C <90 ĐỘ. Vẽ AH vuông góc với BC tại H. Trên AB lấy điểm D sao cho AD=HC. Chứng minh DH đi qua trung điểm của AC. Giups mình nhé! Tầm 3 tiếng nữa đi học rồi!
Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HD
a) Chứng minh tam giác ABD đều
b) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?
c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1AB2+1AC2=1AH2
Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HD
a) Chứng minh tam giác ABD đều
b) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?
c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1AB2+1AC2=1AH2
Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HD
a) Chứng minh tam giác ABD đều
b) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?
c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1AB2+1AC2=1AH2
Cho tam giác ABC, góc A= 90 độ, góc B= 60 độ, đường cao AH. Trên đoạn HC lấy điểm D sao cho : BH=HD
a) Chứng minh tam giác ABD đều
b) Qua D kẻ đường thẳng vuông góc với BC cắt AC ở E. Tam giác AED là tam giác gì? Vì sao?
c) Từ C kẻ CF vuông góc với AD. Chứng minh: AH=HF=FC , Chứng minh 1/AB^2+1/AC^2=1/AH^2
Cho tam giác ABC có góc A = 90 độ và AB = AC. Gọi K là trung điểm của BC
a) Chứng minh tam giác AKB = tam giác AKC và AK vuông góc BC
b) Từ C kẻ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK
a: Xét ΔAKB và ΔAKC có
AK chung
KB=KC
AB=AC
Do đó: ΔAKB=ΔAKC
Ta có: ΔABC cân tại A
mà AK là đường trung tuyến
nên AK là đường cao
b: AK⊥BC
EC⊥BC
Do đó: AK//EC
a: Xét ΔAKB và ΔAKC có
AK chung
KB=KC
AB=AC
Do đó: ΔAKB=ΔAKC
Ta có: ΔABC cân tại A
mà AK là đường trung tuyến
nên AK là đường cao
b: AK⊥BC
EC⊥BC
Do đó: AK//EC
Cho tam giác ABC có góc ABC = 2 góc ACB. Hạ AH vuông góc với BC tại H.
a. Chứng minh rằng: HB<HC
b. Trên đoạn thẳng HC lấy điểm I sao cho HI=HC. Chứng minh rằng tam giác AIC cân.
c. Trên tia đối của tia BA lấy điểm D sao cho HD=HC. Chứng minh rằng đường thẳng DH đi qua trung điểm của cạnh AC.
Cho tam giác ABC có góc A = 90 độ, AC > AB, kẻ AH vuông góc với BC, trên tia HC lấy điểm D sao cho HD = HB, kẻ CE vuông góc với AD kéo dài (E thuộc AD).
a) Chứng minh tam giác ABD cân.
b) Chứng minh góc DAH = góc ACB.
c) Chứng minh CB là tia phân giác góc ACE.
d) Chứng minh DI vuông góc AC (I thuộc AC) và ba đường AH, ID và CE đồng quy.
e) So sánh AC và CD.
f) Tìm điều kiện của tam giác ABC để I là trung điểm của AC.
a: Xét ΔABD có
AH vừa là đường cao, vừa là trung tuyến
=>ΔABD cân tại A
b: ΔABD cân tại A
=>góc ADH=góc ABH
mà góc ABH=góc HAC
nên góc ADH=góc HAC
ΔABD cân tại A
mà AH là đường cao
nên AH là phân giác của góc BAD
=>góc BAH=góc DAH
mà góc BAH=góc ACB
nên góc DAH=góc ACB
c: Xét ΔDHA vuông tại H và ΔDEC vuông tại E có
góc HDA=góc EDC
=>ΔDHA đồng dạng với ΔDEC
=>góc ECD=góc HAD
=>góc ECB=góc ACB
=>CB là phân giác của góc ACE
e: ΔBAD cân tại A
=>góc ADB<90 độ
=>góc ADC>90 độ
Xét ΔADC có góc ADC>90 độ
nên AC là cạnh lớn nhất
=>AC>CD
Câu 1: Cho tam giác ABC có góc A= 90 độ. kẻ AH vuông góc với BC (H e BC) Trên đường vuông góc với BC tại điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH=BD chứng minh a) tam giác AHB=DBH b) hai đường thẳng AB và DH có song song không? vì sao?
Câu 2: Cho góc nhọn xOy. Trên tia Ox lấy điểm A, lấy điểm B trên tia Oy sao cho OA=OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC=BD chứng minh AD=BC. gọi E là giao điểm AD và BC, chứng minh tam giác EAD=EBD.
Câu 3: Cho tam giác ABC vuông tại A, kẻ phân giác BD (D e AC), kẻ DE vuông góc với BC tại E. Chứng minh BA=BE
Câu 4: Cho tam giác ABC vuông tại A, kẻ phân giác BD (D e AC), kẻ DE vuông góc với BC tại E. gọi F là giao điểm của tia BA và ED. chứng minh tam giác BDA=BDE và DC=DF
Giúp mình giải lun nhé. Giúp mình đi mình Tick cho!!!
Cho tam giác abc cân tại A có góc A=40 độ.Trên cạnh AB lấy điểm D,trên tia đối của tia CA lấy điểm E sao cho BD=CE.Kẻ DH và EK cùng vuông góc với đường thẳng BC.(H,K thuộc BC)
1)Tính góc B, góc C của tam giác ABC.
2)Chứng minh DH= EK.
3)Gọi M là trung điểm của HK, chứng minh M là trung điểm của DE.
1. góc B=C(tam giác cân)
B=C=\(\dfrac{180-40}{2}\) =70o
2. Xét tam giác DBH và EKC có:
H=E=90o( gt)
BD=CE(gt)
B=C( tam giác ABC cân)
=> 2 tam giác = nhau( ch-gn)