Chứng minh (n + 2) và (2n + 5) là hai sô nguyên tô cung nhau (voi x € N)
cau 1 tinh nhanh
a,1-1/2-1/6-1/12-...-1/380
b, B= 1.30+2.29+3.28+...+28.3+29.2+30.1
cau 2:
a, tim sô tu nhiên a nho nhat biêt rang a chia cho 24 du 7 con a chia cho 28 du 15
b, chung to rang 11.n+5 va 2n+1 nguyên tô cung nhau voi moi n thuôc N
c,tim cac sô nguyên duong a va b thoa man a.b=2.(a-b)
Chứng minh rằng 2n+5 và 3n+7 là hai sô nguyên tố cùng nhau
Gọi ƯCLN(2n + 5, 3n + 7) là y. Ta có:
2n + 5 chia hết cho y
3n + 7 chia hết cho y
=> 3n + 7 - (2n + 5) chia hết cho y
=> 14 chia hết cho y
Mà 2n + 5 là số lẻ không chia hết cho 14
=> ƯCLN(2n + 5, 3n + 7) = 1
=> 2n + 5 và 3n + 7 lầ hai số nguyên tố cùng nhau
Chứng minh rằng với mọi STN n ta có:
2n+5 và n+2 nguyên tố cung nhau
gọi d là ƯCLN (2n+5 ; n+2) (d thuộc N)
=> 2n+1 chia hết cho d
và n+2 chia hết cho d (1)
vì n + 2 chia hết cho d =>2(n+2) chia hết cho d hay 2n +4 chia hết cho d(2)
từ (1) (2) => (2n+ 5)-(2n+4) chia hết cho d
=> 1 chia hết cho d
=> d=1
=> ƯCLN (2n+5;n+2) =1
=>2n+5; n+2 là 2 số nt cùng nhau (đpcm)
Chứng minh 2n+5 và 6n+17 là hai số nguyên tố cùng nhau
Chứng minh 2 số lẻ liên tiếp là hai số nguyên tố cùng nhau
Chứng minh n+3 và 3n+10 là hai số nguyên tố cùng nhau
1.Chứng tỏ rằng hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
2.Chứng minh rằng với mọi số tự nhiên , các số sau là các số nguyên tố cùng nhau.
a) n+1 và n+2 b)2n+2 và 2n+3
c)2n+1 và n+1 d)n+1 và 3n+4
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
Bài 2:
c.
Gọi $d=ƯCLN(2n+1, n+1)$
$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.
d.
Gọi $d=ƯCLN(n+1, 3n+4)$
$\Rightarrow n+1\vdots d; 3n+4\vdots d$
$\Rightarrow 3n+4-3(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$
$\Rightarrow$ 2 số này nguyên tố cùng nhau.
Chứng minh rằng: Hai số 2n + 5 và n + 2 là hai số nguyên tố cùng nhau.
Gọi d \(\in\) ƯC( 2n + 5;n + 2)
\(\text{⇒2n+5−2(n+2)}\) chia hết cho dd
hay 1chia hết cho d
\(\text{⇒d=1}\)
vậy 2n+5 và n+2 nguyên tố cùng nhau
Gọi d ∈∈ ƯC( 2n + 5;n + 2)
⇒2n+5−2(n+2)⇒2n+5−2(n+2) chia hết cho dd
hay 1chia hết cho d
⇒d=1⇒d=1
vậy 2n+5 và n+2 nguyên tố cùng nhau
Biết n ∈ N, chứng minh 2n+3 và 3n+5 là hai số nguyên tố cùng nhau.
Gọi ƯCLN ( 2n + 3 , 3n + 5 ) là d.
Ta có : 2n + 3 chia hết cho d.
3n + 5 chia hết cho d.
=> 3( 2n + 3 ) chia hết cho d.
=> 2(3n + 5 ) chia hết cho d.
=> 6n + 9 chia hết cho d.
=> 6n +10 chia hết cho d.
Vậy ( 6n + 10 ) - ( 6n + 9 ) chia hết cho d.
=> 1 chia hết cho d.
=> d thuộc ước của 1.
=> d = 1.
=> ƯCLN ( 2n + 3 , 3n + 5 ) = 1.
Vậy 2n + 3 và 3n + 5 là hai số nguyên tố cùng nhau.
Chứng minh rằng: 2n + 2 và 6n + 5 là hai số nguyên tố cùng nhau với mọi n thuộc N
tham khảo câu hỏi tương tự nha bạn
2n + 2 = 4n
6n + 5 = 11n
=> ƯCLN(4n, 11n) = 1
<=> ƯCLN(2n + 2, 6n + 5) = 1
Vì 2, 5 là số nguyên tố mà chỉ duy nhất 6 là hợp số nên 6 + 5 = 11 là số nguyên tố
=> ƯCLN(2n + 2, 6n + 5) = 1
=> ĐPCM
Chứng minh: n^2 + n và 2n+1 là hai số nguyên tố cùng nhau.
Vì \(n^2+n\) là số chẵn
và 2n+1 là số lẻ
nên \(n^2+n\) và 2n+1 là hai số nguyên tố cùng nhau
Hình như sai ý đề bài rồi ạ, n^2+n là số chẵn thì nó cũng có thể chia hết cho 3, 2n+1 là số lẻ thì nó cũng có thể chia hết cho 3 mà ạ, nguyên tố cùng nhau là ước chung lớn nhất của nó = 1 ạ