Cho p= √x+1/√x-1 a) So sánh p và √p b) Tìm x để 1/p thuộc z
cho biểu thức
p=\(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\)
a) rÚT GỌN p
B) TÌM GIÁ TRỊ CỦA X ĐỂ p=-1
C) TÌM X THUỘC Z ĐỂ P THUỘC Z
D) SO SÁNH P VỚI 1
E) TÌM GIÁ TRỊ NHỎ NHẤT CỦA p
a) ĐKXĐ: \(x\ge0,x\ne1\)
\(P=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
b) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=-1\)
\(\Leftrightarrow-\sqrt{x}-1=\sqrt{x}-1\Leftrightarrow2\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\)
c) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\in Z\)
\(\Leftrightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Kết hợp đk:
\(\Leftrightarrow x\in\left\{0\right\}\)
d) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}< 1\)
e) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)
Do \(\sqrt{x}+1\ge1\Leftrightarrow-\dfrac{2}{\sqrt{x}+1}\ge-2\)
\(\Leftrightarrow P=1-\dfrac{2}{\sqrt{x}+1}\ge1-2=-1\)
\(minP=-1\Leftrightarrow x=0\)
\(a,P=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\left(x\ge0;x\ne1\right)\\ P=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\\ b,P=-1\Leftrightarrow\sqrt{x}-1=-\sqrt{x}-1\\ \Leftrightarrow2\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\\ c,P\in Z\Leftrightarrow\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\in Z\\ \Leftrightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{1;2\right\}\left(\sqrt{x}+1\ge1\right)\\ \Leftrightarrow\sqrt{x}=0\left(x\ne1\right)\\ \Leftrightarrow x=0\)
\(d,P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}< 1\left(\dfrac{2}{\sqrt{x}+1}>0\right)\\ e,P=1-\dfrac{2}{\sqrt{x}+1}\\ \sqrt{x}+1\ge1\Leftrightarrow-\dfrac{2}{\sqrt{x}+1}\ge-\dfrac{2}{1}=-2\\ \Leftrightarrow P=1-\dfrac{2}{\sqrt{x}+1}\ge1-\left(-2\right)=3\)
Dấu \("="\Leftrightarrow x=0\)
Bài 1 : Tìm x thuộc Z, sao cho :
a) ( x - 1 ) ( x - 3 ) > = 0
b) ( x - 5 ) ( x - 7 ) < 0
c) ( x2 - 1 ) ( x2 - 4 ) < 0
Bài 2 : Cho a là số nguyên âm. So sánh :
( -7 ) a và ( -22 ) a
So sánh :
15 ( a - 5 ) và 14 ( a - 5 )
Bài 3 : Tìm x,y thuộc Z, biết :
a) x . y = -21
b) ( 2x - 1 ) ( 2y+ 1 ) = -25
Hơi nhiều nên các bạn cố gắng giúp mình xíu, Thanks !!!
Cho R =x²+x+1/x a) so sánh R với 3 b) Tìm giá trị nhỏ nhất của R c) tìm x thuộc Z để R >4
a: R-3=(x^2+x-1-3x)/x=(x-1)^2/x
Nếu x>0 thì R-3>0
=>R>3
Nếu x<0 thì R-3<0
=>R<3
c: Để R>4 thì R-4>0
=>\(\dfrac{x^2+x+1-4x}{x}>0\)
=>\(\dfrac{x^2-3x+1}{x}>0\)
TH1: x>0 và x^2-3x+1>0
=>x>0 và \(\left[{}\begin{matrix}x< \dfrac{3-\sqrt{5}}{2}\\x>\dfrac{3+\sqrt{5}}{2}\end{matrix}\right.\Leftrightarrow x>\dfrac{3+\sqrt{5}}{2}\)
mà x nguyên
nên x>3
TH2: x<0 và x^2-3x+1<0
=>x<0 và \(\dfrac{3-\sqrt{5}}{2}< x< \dfrac{3+\sqrt{5}}{2}\)(loại)
1
a)Tìm các phân số có mẫu bằng 20 biết rằng giá trị của lớn hơn -11/23 và nhỏ hơn 7/23
b)Tìm giá trị phân số có tử bằng 4 biết giá trị của nó nhỏ hơn -5/12 và lớn hơn và lớn hơn -5/11
2.So sánh
a) a-1/a và b+1/b (a,b thuộc Z; a,b>0)
b)c-1/c và d+1/d (c,d thuộc Z ;c,d <0)
3.Tìm x thuộc Z để phân số sau nguyên
a) 2x+1/x+6
b) 6x+5/2x-1
4, Tìm cặp x,y thuộc Z biết
a) x+1/3=2/y+3
b) 5/x +y/4 =1/8
Giups mik nha mơn cc nhiều
Cho hai biểu thức sau:
A=\(\frac{x-\sqrt{x}}{x-1}\) và B=\(\frac{x-4}{x+2\sqrt{x}}\)
a) Rút gọn biểu thức A và B
b) So sánh A và B
c) Tìm x để A*B thuộc Z
d) Tìm x để A*B < \(\frac{1}{2}\)
Giúp mình phần c) với!!! Hứa sẽ hậu tạ.
Mk làm từng câu nhé !
a)\(A=\frac{x-\sqrt{x}}{x-1}\left(đk:x\ge0,x\ne1\right)\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)(vì \(x\ge0\))
\(=\frac{\sqrt{x}}{\sqrt{x}+1}\)
\(B=\frac{x-4}{x+2\sqrt{x}}\left(đk:x>0,x\ne4\right)\)
\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}=1+\frac{2}{\sqrt{x}}\)
a.\(DK:x\ge0,x\ne1\)
\(A=\frac{x-\sqrt{x}}{x-1}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}}{\sqrt{x}+1}\)
\(DK:x\ge0\)
\(B=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}-2}{\sqrt{x}}\)
b.\(A-B=\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}-2}{\sqrt{x}}=\frac{x-x+\sqrt{x}+2}{x+\sqrt{x}}=\frac{\sqrt{x}+2}{x+\sqrt{x}}>0\)
\(\Rightarrow A-B>0\Rightarrow A>B\)
c.Ta co:\(A.B=\frac{\sqrt{x}}{\sqrt{x}+1}.\frac{\sqrt{x}-2}{\sqrt{x}}=\frac{\sqrt{x}-2}{\sqrt{x}+1}=1-\frac{3}{\sqrt{x}+1}\)
De \(A.B\in Z\)
\(\Rightarrow1-\frac{3}{\sqrt{x}+1}\in Z\)
\(\Rightarrow\frac{3}{\sqrt{x}+1}\in Z\)
\(\Rightarrow3⋮\sqrt{x}+1\)
\(\Rightarrow x=4\)
d.Ta co: \(A.B=\frac{\sqrt{x}-2}{\sqrt{x}+1}< \frac{1}{2}\)
\(\Leftrightarrow2\sqrt{x}-4< \sqrt{x}+1\)
\(\Leftrightarrow x< 25\)
Để làm 1 lượt luôn, hihi !
b)
Có \(A=\frac{\sqrt{x}}{\sqrt{x}+1}\)\(< 1\)(vì \(x\ge0\))
\(B=1+\frac{2}{\sqrt{x}}>1\)(Vì \(x\ge0\))
=>A<B
c)Ta có:
A.B=\(\frac{\sqrt{x}}{\sqrt{x}+1}.\frac{2}{\sqrt{x}}=\frac{\sqrt{x}+2}{\sqrt{x}+1}=1+\frac{1}{\sqrt{x}+1}\)
Để:\(A.B\in\frac{Z\Rightarrow1}{\sqrt{x}+1}\in Z\)
Với:\(x\ge0\)có \(\orbr{\begin{cases}\sqrt{x}\in Z\\\sqrt{x}\notin Z\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}+1\in Z\\\sqrt{x}+1\notin Z\end{cases}\Leftrightarrow}\orbr{\begin{cases}\frac{1}{\sqrt{x}+1}\in Z\left(tm\right)\\\frac{1}{\sqrt{x}+1}\notin Z\left(ktm\right)\end{cases}}}\)
\(\Rightarrow\sqrt{x}+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{0;-2\right\}\)
Mà \(\sqrt{x}\ge0\Rightarrow\sqrt{x}=0\Leftrightarrow x=0\left(\frac{t}{m}\right)\)
Vậy: để A.B thuộc Z <=> x=0
d)Có A.B < 1/2
<=>\(1+\frac{1}{\sqrt{x}+1}< \frac{1}{2}\Leftrightarrow\frac{1}{\sqrt{x}+1}+\frac{1}{2}< 0\)(vô lý)
Vậy không có x t/m A.B < 1/2
Bài 1: cho A = 999......9 (n chữ số 9). So sánh tổng các chữ số của A và tổng các chữ số của A^2.
Bài 2: Tìm n thuộc Z để n^2+9n+7 chia hết cho n+2.
Bài 3: Tìm các ước chung của 12n+1 và 30n+2.
Bài 4: So sánh A và 1/4 biết:
A= 1/2^3 + 1/3^3 + 1/4^3 + ... + 1/n^3.
Bài 5: So sánh 1/40 và B=1/5^3 + 1/6^3 + ... + 1/2004^3.
Bài 6: Tìm x, y biết:
x/2 = y/5 và 2x-y=3
Bài 7: Tìm x, y biết:
x/2=y/5 và x . y = 10
1.Cho
B= 2|x|+3 \ 3|x|-1 ( x thuộc Z)
a: tìm x thuộc z để B đạt GTLN
b: tìm x thuộc z để B có giá trị là số tự nhiên
2.Cho x-y=2 ( x,y thuộc Z)
Tìm GTNN
C= |2x+1| + |2y+1|
1.Cho
B= 2|x|+3 \ 3|x|-1 ( x thuộc Z)
a: tìm x thuộc z để B đạt GTLN
b: tìm x thuộc z để B có giá trị là số tự nhiên
2.Cho x-y=2 ( x,y thuộc Z)
Tìm GTNN
C= |2x+1| + |2y+1|
1.Cho
B= 2|x|+3 \ 3|x|-1 ( x thuộc Z)
a: tìm x thuộc z để B đạt GTLN
b: tìm x thuộc z để B có giá trị là số tự nhiên
2.Cho x-y=2 ( x,y thuộc Z)
Tìm GTNN
C= |2x+1| + |2y+1|
giúp mình nha