Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Kiều Trinh
Xem chi tiết
Lấp La Lấp Lánh
14 tháng 10 2021 lúc 8:39

a) ĐKXĐ: \(x\ge0,x\ne1\)

\(P=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

b) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=-1\)

\(\Leftrightarrow-\sqrt{x}-1=\sqrt{x}-1\Leftrightarrow2\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\)

c) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\in Z\)

\(\Leftrightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

Kết hợp đk:

\(\Leftrightarrow x\in\left\{0\right\}\)

d) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}< 1\)

e) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)

Do \(\sqrt{x}+1\ge1\Leftrightarrow-\dfrac{2}{\sqrt{x}+1}\ge-2\)

\(\Leftrightarrow P=1-\dfrac{2}{\sqrt{x}+1}\ge1-2=-1\)

\(minP=-1\Leftrightarrow x=0\)

Nguyễn Hoàng Minh
14 tháng 10 2021 lúc 8:46

\(a,P=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\left(x\ge0;x\ne1\right)\\ P=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\\ b,P=-1\Leftrightarrow\sqrt{x}-1=-\sqrt{x}-1\\ \Leftrightarrow2\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\\ c,P\in Z\Leftrightarrow\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\in Z\\ \Leftrightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{1;2\right\}\left(\sqrt{x}+1\ge1\right)\\ \Leftrightarrow\sqrt{x}=0\left(x\ne1\right)\\ \Leftrightarrow x=0\)

\(d,P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}< 1\left(\dfrac{2}{\sqrt{x}+1}>0\right)\\ e,P=1-\dfrac{2}{\sqrt{x}+1}\\ \sqrt{x}+1\ge1\Leftrightarrow-\dfrac{2}{\sqrt{x}+1}\ge-\dfrac{2}{1}=-2\\ \Leftrightarrow P=1-\dfrac{2}{\sqrt{x}+1}\ge1-\left(-2\right)=3\)

Dấu \("="\Leftrightarrow x=0\)

Lê Diễm Quỳnh
Xem chi tiết
Hoàn Hà
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 1 2023 lúc 14:53

a: R-3=(x^2+x-1-3x)/x=(x-1)^2/x

Nếu x>0 thì R-3>0

=>R>3

Nếu x<0 thì R-3<0

=>R<3

c: Để R>4 thì R-4>0

=>\(\dfrac{x^2+x+1-4x}{x}>0\)

=>\(\dfrac{x^2-3x+1}{x}>0\)

TH1: x>0 và x^2-3x+1>0

=>x>0 và \(\left[{}\begin{matrix}x< \dfrac{3-\sqrt{5}}{2}\\x>\dfrac{3+\sqrt{5}}{2}\end{matrix}\right.\Leftrightarrow x>\dfrac{3+\sqrt{5}}{2}\)

mà x nguyên

nên x>3

TH2: x<0 và x^2-3x+1<0

=>x<0 và \(\dfrac{3-\sqrt{5}}{2}< x< \dfrac{3+\sqrt{5}}{2}\)(loại)

 

Nguyễn Hà Phương
Xem chi tiết
Nguyễn Thu Hiền
Xem chi tiết
Rinu
24 tháng 8 2019 lúc 18:15

Mk làm từng câu nhé !

a)\(A=\frac{x-\sqrt{x}}{x-1}\left(đk:x\ge0,x\ne1\right)\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)(vì \(x\ge0\))

\(=\frac{\sqrt{x}}{\sqrt{x}+1}\)

\(B=\frac{x-4}{x+2\sqrt{x}}\left(đk:x>0,x\ne4\right)\)

\(=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}=1+\frac{2}{\sqrt{x}}\)

Nyatmax
24 tháng 8 2019 lúc 18:27

a.\(DK:x\ge0,x\ne1\)

\(A=\frac{x-\sqrt{x}}{x-1}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}}{\sqrt{x}+1}\)

\(DK:x\ge0\)

\(B=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}-2}{\sqrt{x}}\)

b.\(A-B=\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}-2}{\sqrt{x}}=\frac{x-x+\sqrt{x}+2}{x+\sqrt{x}}=\frac{\sqrt{x}+2}{x+\sqrt{x}}>0\) 

\(\Rightarrow A-B>0\Rightarrow A>B\)

c.Ta co:\(A.B=\frac{\sqrt{x}}{\sqrt{x}+1}.\frac{\sqrt{x}-2}{\sqrt{x}}=\frac{\sqrt{x}-2}{\sqrt{x}+1}=1-\frac{3}{\sqrt{x}+1}\)

De \(A.B\in Z\)

\(\Rightarrow1-\frac{3}{\sqrt{x}+1}\in Z\)

\(\Rightarrow\frac{3}{\sqrt{x}+1}\in Z\)

\(\Rightarrow3⋮\sqrt{x}+1\)

\(\Rightarrow x=4\)

d.Ta co: \(A.B=\frac{\sqrt{x}-2}{\sqrt{x}+1}< \frac{1}{2}\)

\(\Leftrightarrow2\sqrt{x}-4< \sqrt{x}+1\)

\(\Leftrightarrow x< 25\)

Rinu
24 tháng 8 2019 lúc 18:37

Để làm 1 lượt luôn, hihi !

b)

Có \(A=\frac{\sqrt{x}}{\sqrt{x}+1}\)\(< 1\)(vì \(x\ge0\))

\(B=1+\frac{2}{\sqrt{x}}>1\)(Vì \(x\ge0\))

=>A<B

c)Ta có:

A.B=\(\frac{\sqrt{x}}{\sqrt{x}+1}.\frac{2}{\sqrt{x}}=\frac{\sqrt{x}+2}{\sqrt{x}+1}=1+\frac{1}{\sqrt{x}+1}\)

Để:\(A.B\in\frac{Z\Rightarrow1}{\sqrt{x}+1}\in Z\)

Với:\(x\ge0\)có \(\orbr{\begin{cases}\sqrt{x}\in Z\\\sqrt{x}\notin Z\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}+1\in Z\\\sqrt{x}+1\notin Z\end{cases}\Leftrightarrow}\orbr{\begin{cases}\frac{1}{\sqrt{x}+1}\in Z\left(tm\right)\\\frac{1}{\sqrt{x}+1}\notin Z\left(ktm\right)\end{cases}}}\)

\(\Rightarrow\sqrt{x}+1\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{0;-2\right\}\)

Mà \(\sqrt{x}\ge0\Rightarrow\sqrt{x}=0\Leftrightarrow x=0\left(\frac{t}{m}\right)\)

Vậy: để A.B thuộc Z <=> x=0

d)Có A.B < 1/2

<=>\(1+\frac{1}{\sqrt{x}+1}< \frac{1}{2}\Leftrightarrow\frac{1}{\sqrt{x}+1}+\frac{1}{2}< 0\)(vô lý)

Vậy không có x t/m A.B < 1/2

Erika Alexandra
Xem chi tiết
Princess Secret
Xem chi tiết
Thuần tình sơn thủy
Xem chi tiết
Nguyễn Minh Đức
Xem chi tiết