tìm các cặp sô nguyên x, y biết : 2x^2y - x^2 -2y - 2 = 0
Tìm các cặp số nguyên x,y biết: 2x2y-x2-2y-2=0
Tìm các cặp số nguyên x;y biết:
2x2y-x2-2y-2=0
Tìm các cặp số nguyên (x;y) thỏa mãn : \(x^2y+xy-2x^2-3x+4=0\)
tìm các cặp số nguyên dương (x,y) thỏa mãn : 2x^2-xy-x-2y+1=0
\(\Leftrightarrow2x^2-x+1=xy+2y\)
\(\Leftrightarrow2x^2-x+1=y\left(x+2\right)\)
\(\Leftrightarrow y=\dfrac{2x^2-x+1}{x+2}=2x-5+\dfrac{11}{x+2}\)
Do y nguyên \(\Rightarrow\dfrac{11}{x+2}\) nguyên \(\Rightarrow x+2=Ư\left(11\right)\)
Mà x nguyên dương \(\Rightarrow x+2\ge3\Rightarrow x+2=11\Rightarrow x=9\)
\(\Rightarrow y=14\)
Vậy \(\left(x;y\right)=\left(9;14\right)\)
Tìm các cặp số nguyên x, y biết:
2x2y-x2-2y-2=0
Ta có :
\(2x^2y-x^2-2y-2=0\)
\(\Leftrightarrow\)\(2x^2y-x^2-2y+1-3=0\)
\(\Leftrightarrow\)\(x^2\left(2y-1\right)-\left(2y-1\right)=3\)
\(\Leftrightarrow\)\(\left(x^2-1\right)\left(2y-1\right)=3\)
Đến đây xét các trường hợp ra nhá :')
Tìm các cặp số nguyên \(\left(x,y\right)\) sao cho: \(3x^2-y^2-2xy-2x-2y+40=0\)
Ta đặt y = x + k với k \(\inℤ\)
Khi đó 3x2 - y2 - 2xy - 2x - 2y + 40 = 0
<=> 3x2 - (x + k)2 - 2x(x + k) - 2x - 2(x + k) + 40 = 0
<=> k2 + 4xk + 4x + 2k - 40 = 0
<=> (k + 1)2 + 4x(k + 1) = 41
<=> (k + 1)(4x + k + 1) = 41
Ta lập bảng ta được :
k + 1 | 1 | 41 | -1 | -41 |
4x + k + 1 | 41 | 1 | -41 | -1 |
x | 10 | -10 | -10 | 10 |
k | 0 | 40 | -2 | -42 |
lại có y = x + k
ta được các cặp (x;y) cần tìm là (10;10) ; (-10 ; 30) ; (-10 ; -12) ; (10;-32)
Tìm all các cặp số nguyên dương(x,y) thỏa mãn 2x^2-xy-x-2y+1=0
tìm các cặp số nguyên x y
x(y+2)=-8
xy-2x-2y=0
a, x.( y + 2 ) = -8
Ta có bảng sau :
x | 1 | -1 | 8 | -8 | 2 | -2 | 4 | -4 |
y + 2 | -8 | 8 | -1 | 1 | -4 | 4 | -2 | 2 |
y | -10 | 6 | -3 | -1 | -6 | 2 | -4 | 0 |
Bạn tự kết luận nha !
b, xy - 2x - 2y = 0
x.( y - 2 ) - 2y - 4 = -4
x.( y - 2 ) - 2.( y - 2 ) = -4
( x - 2 ) . ( y - 2 ) = -4
Ta có bảng sau :
x – 2 | -1 | 1 | -4 | 4 | 2 | -2 |
y - 2 | 4 | -4 | 1 | -1 | -2 | 2 |
x | 1 | 3 | -2 | 6 | 4 | 0 |
y | 6 | -2 | 3 | 1 | 0 | 4 |
Bạn tự kết luận nha !
#Học tốt#
Vì x,y nguyên suy ra x và y+2 nguyên
nên x và y+2 thuộc ước nguyên của (-8)
Ta có bảng sau
x | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
y+2 | -8 | 8 | -4 | 4 | -2 | 2 | -1 | 1 |
y | -10 | 6 | -6 | 2 | -4 | 0 | -3 | -1 |
Tự kết luận nhé
b) x.(y-2) - 2.(y-2) =4
hay (x-2).(y-2) = 4
Làm tương tự như trên nhé
tìm tất cả các cặp số nguyên dương (x,y) thỏa mãn : 2x2-xy-x-2y+1=0
Viết pt trên thành pt bậc 2 đối với x:
\(2x^2-x\left(y+1\right)-\left(2y-1\right)=0\) (1)
(1) có nghiệm \(\Leftrightarrow\Delta=\left(y+1\right)^2+8\left(2y-1\right)\ge0\)
\(\Leftrightarrow y^2+18y-7\ge0\Leftrightarrow\orbr{\begin{cases}y\le-9-2\sqrt{22}\\y\ge-9+2\sqrt{22}\end{cases}}\)
Ta cần có \(\Delta\) là số chính phương.Tức là:
\(y^2+18y-7=k^2\Leftrightarrow\left(x+9\right)^2-k^2=88\)
\(\Leftrightarrow\left(x+9-k\right)\left(x+9+k\right)=88\)
Gắt gắt,đợi tí nghĩ cách khác xem sao,cách này thử sao nổi -_-