Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hà Quỳnh
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 4 2020 lúc 21:20

Câu 1:

Do \(\Delta\) song song d nên nhận \(\left(2;-1\right)\) là 1 vtpt

Phương trình \(\Delta\) có dạng: \(2x-y+c=0\) (\(c\ne2015\))

Tọa độ giao điểm của \(\Delta\) và Ox: \(\left\{{}\begin{matrix}y=0\\2x-y+c=0\end{matrix}\right.\) \(\Rightarrow M\left(-\frac{c}{2};0\right)\)

Tọa độ giao điểm \(\Delta\) và Oy: \(\left\{{}\begin{matrix}x=0\\2x-y+c=0\end{matrix}\right.\) \(\Rightarrow N\left(0;c\right)\)

\(\overrightarrow{MN}=\left(\frac{c}{2};c\right)\Rightarrow\frac{c^2}{4}+c^2=45\Leftrightarrow c^2=36\Rightarrow\left[{}\begin{matrix}c=6\\c=-6\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}2x-y+6=0\\2x-y-6=0\end{matrix}\right.\)

Bài 2:

Bạn tham khảo ở đây:

Câu hỏi của tôn hiểu phương - Toán lớp 10 | Học trực tuyến

Vũ Nguyễn
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
29 tháng 9 2023 lúc 23:59

a) Khoảng cách từ gốc tọa độ \(O\left( {0;0} \right)\) đến điểm \(M\left( {3;4} \right)\) trong mặt phẳng tọa độ Oxy là:

\(OM = \left| {\overrightarrow {OM} } \right| = \sqrt {{3^2} + {4^2}}  = 5\)

b) Với hai điểm I(a; b) và M(x ; y) trong mặt phẳng toạ độ Oxy, ta có:\(IM = \sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y - b} \right)}^2}} \)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
28 tháng 9 2023 lúc 23:42

a) Gọi \(M\left( {a;b} \right) \Rightarrow \overrightarrow {AM}  = \left( {a - 2;b - 3} \right)\)

Tọa độ vecto \(\overrightarrow {BC}  = \left( {4; - 2} \right)\)

Để \(\overrightarrow {AM{\rm{ }}}  = {\rm{ }}\overrightarrow {BC}  \Leftrightarrow \left\{ \begin{array}{l}a - 2 = 4\\b - 3 =  - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 6\\b = 1\end{array} \right.\)

Vậy để \(\overrightarrow {AM{\rm{ }}}  = {\rm{ }}\overrightarrow {BC} \) thì tọa độ điểm M là:\(M\left( {6;1} \right)\)

b) Gọi \(N\left( {x,y} \right) \Rightarrow \overrightarrow {NC}  = \left( {3 - x, - 1 - y} \right)\)và \(\overrightarrow {AN}  = \left( {x - 2,y - 3} \right)\)

Do N là trung điểm AC nên \(\overrightarrow {AN}  = \overrightarrow {NC}  \Leftrightarrow \left\{ \begin{array}{l}x - 2 = 3 - x\\y - 3 =  - 1 - y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{5}{2}\\y = 1\end{array} \right.\) . Vậy \(N\left( {\frac{5}{2},1} \right)\)

Ta có: \(\overrightarrow {BN} {\rm{ }} = \left( {  \frac{7}{2};0} \right)\) và \(\overrightarrow {NM}  = \left( {\frac{{ 7}}{2};0} \right)\). Vậy \(\overrightarrow {BN} {\rm{ }} = {\rm{ }}\overrightarrow {NM} \)

An Huy
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 12 2020 lúc 19:58

\(\overrightarrow{AB}=\left(4;-1\right)\Rightarrow AB=\sqrt{4^2+\left(-1\right)^2}=\sqrt{17}\)

\(\overrightarrow{AC}=\left(3;-5\right)\Rightarrow AC=\sqrt{3^2+\left(-5\right)^2}=\sqrt{34}\)

\(\overrightarrow{CB}=\left(1;4\right)\Rightarrow BC=\sqrt{1^2+4^2}=\sqrt{17}\)

Chu vi: \(AB+AC+BC=2\sqrt{17}+\sqrt{34}\)

nguyễn hoàng lê thi
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 10 2019 lúc 13:34

Toàn công thức cơ bản, áp dụng là được mà bạn:

\(\left\{{}\begin{matrix}x_I=\frac{x_A+x_B}{2}=\frac{2+4}{2}=3\\y_I=\frac{y_A+y_B}{2}=2\end{matrix}\right.\) \(\Rightarrow I\left(3;2\right)\)

\(\overrightarrow{AB}=\left(x_B-x_A;y_B-y_A\right)=\left(15;6\right)\)

Phương Ngọc Nguyễn
Xem chi tiết
DuaHaupro1
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 3 2022 lúc 23:24

Gọi E(x;y) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(1;-2\right)\\\overrightarrow{EC}=\left(3-x;3-y\right)\end{matrix}\right.\)

Tứ giác ABCE là hbh khi \(\overrightarrow{AB}=\overrightarrow{EC}\)

\(\Leftrightarrow\left\{{}\begin{matrix}3-x=1\\3-y=-2\end{matrix}\right.\) \(\Rightarrow E\left(2;5\right)\)

Thanhtung Phan
Xem chi tiết