giai pt : a ) ( 2x +1 ) ( x-3 ) ( x +7 ) = 0
b ) x^2-4x+3=0
Giai pt
A 2x-7=5x+20
B x^3-4x=0
C 1phan2x-3-3phan2x^2-3x=5phanx
D |x2-1|=2x+1
A, 2x-7=5x+20
<=>3x=-27
<=>x=-9
B, x^3-4x=0
<=>x(x2-4)=0
<=>x(x-2)(x+2)=0
<=>x=0, 2,-2
C,
giai pt
a,(x-2)4+(x-2)(5x2-14x+13)+1=0
b,(x2-x)2-2x(3x-5)-3=0
c,x4+4x3+4x+1=0
d,x4+x3+x+1=0
Giai Pt sau | 4x + 2| - 5x + 3 = 0 nhận được nghiệm?
Giai Pt sau |-4x| = 2 ( x + 1) ta nhận được nghiệm?
Giai Pt sau |x + 2| + x^2 - ( 3 + x) x = 0 ta nhận được nghiệm?
a. Giai pt : 2x(8x-1)^2(4x-2)=9
b. giai pt : x^2-y^2+2x-4y-10=0 vs x,y thuoc so nguyen duong
giải pt
a 3x(x-1)+2(x-1)=0
b x^2-1-(x+5)(2-x)=0
c 2x^3 +4x^2-x^2+2=0
d x(2x-3)-4x+6=0
e x^3-1=x(x-1)
f (2x-5)^2 -x^2-4x-4=0
h (x-2)(x^2+3x-2)-x^3+8=0
a) 3x(x - 1) + 2(x - 1) = 0
<=> (3x + 2)(x - 1) = 0
<=> \(\orbr{\begin{cases}3x+2=0\\x-1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-\frac{2}{3}\\x=1\end{cases}}\)
Vậy S = {-2/3; 1}
b) x2 - 1 - (x + 5)(2 - x) = 0
<=> x2 - 1 - 2x + x2 - 10 + 5x = 0
<=> 2x2 + 3x - 11 = 0
<=> 2(x2 + 3/2x + 9/16 - 97/16) = 0
<=> (x + 3/4)2 - 97/16 = 0
<=> \(\orbr{\begin{cases}x+\frac{3}{4}=\frac{\sqrt{97}}{4}\\x+\frac{3}{4}=-\frac{\sqrt{97}}{4}\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{\sqrt{97}-3}{4}\\x=-\frac{\sqrt{97}-3}{4}\end{cases}}\)
Vậy S = {\(\frac{\sqrt{97}-3}{4}\); \(-\frac{\sqrt{97}-3}{4}\)
d) x(2x - 3) - 4x + 6 = 0
<=> x(2x - 3) - 2(2x - 3) = 0
<=> (x - 2)(2x - 3) = 0
<=> \(\orbr{\begin{cases}x-2=0\\2x-3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=2\\x=\frac{3}{2}\end{cases}}\)
Vậy S = {2; 3/2}
e) x3 - 1 = x(x - 1)
<=> (x - 1)(x2 + x + 1) - x(x - 1) = 0
<=> (x - 1)(x2 + x + 1 - x) = 0
<=> (x - 1)(x2 + 1) = 0
<=> x - 1 = 0
<=> x = 1
Vậy S = {1}
f) (2x - 5)2 - x2 - 4x - 4 = 0
<=> (2x - 5)2 - (x + 2)2 = 0
<=> (2x - 5 - x - 2)(2x - 5 + x + 2) = 0
<=> (x - 7)(3x - 3) = 0
<=> \(\orbr{\begin{cases}x-7=0\\3x-3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=7\\x=1\end{cases}}\)
Vậy S = {7; 1}
h) (x - 2)(x2 + 3x - 2) - x3 + 8 = 0
<=> (x - 2)(x2 + 3x - 2) - (x- 2)(x2 + 2x + 4) = 0
<=> (x - 2)(x2 + 3x - 2 - x2 - 2x - 4) = 0
<=> (x - 2)(x - 6) = 0
<=> \(\orbr{\begin{cases}x-2=0\\x-6=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=2\\x=6\end{cases}}\)
Vậy S = {2; 6}
\(a,3x\left(x-1\right)+2\left(x-1\right)=0\)
\(3x.x-3x+2x-2=0\)
\(2x-2=0\)
\(2x=2\)
\(x=1\)
Phân tích đa thức thành nhân tử
a) x³-3x²+3x-1-8y³
b) x⁴-4x³+8x²-16x+16
Giải pt
a) 6(x-3) +(x-1) ²-(x+1) ²=2x
b) (x+4) ²-(x+8) (x-8) =96
c) 4x²-1=(2x+1) (3x-5)
d) 2x²-x=3-6x
e) 2x³+5x²-3x=0
f) x(2x-7) -4x+14=0
g) (2x-5) ²-(x+2) ²=0
h) (3x+1) (7x+3) =(5x-7) (3x+1)
i) x²+10x+25-4x(x+5) =0
k))(4x-5) ²-2(16x²-25) =0
l) (4x+3) ²=4(x²-2x+1)
m) x²-11x+28=0
n) 3x³-3x²-6x=0
o) x²-9x+20=0
\(o,x^2-9x+20=0\)
\(\Leftrightarrow x^2-4x-5x+20=0\)
\(\Leftrightarrow x\left(x-4\right)-5\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}\)
\(n,3x^3-3x^2-6x=0\)
\(\Leftrightarrow3x\left(x^2-x-2\right)=0\)
\(\Leftrightarrow3x\left(x^2+x-2x-2\right)=0\)
\(\Leftrightarrow3x\left[x\left(x+1\right)-2\left(x+1\right)\right]=0\)
\(\Leftrightarrow3x\left(x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}3x=0\\x+1=0\end{cases}}\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}x=0\\x=-1\end{cases}}\\x=2\end{cases}}\)
\(m,x^2-11x+28=0\)
\(\Leftrightarrow x^2-4x-7x+28=0\)
\(\Leftrightarrow x\left(x-4\right)-7\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-7=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=7\end{cases}}\)
\(l,\left(4x+3\right)^2=4\left(x^2-2x+1\right)\)
\(\Leftrightarrow16x^2+24x+9=4x^2-8x+4\)
\(\Leftrightarrow16x^2+24x+9-4x^2+8x-4=0\)
\(\Leftrightarrow12x^2+32x+5=0\)
\(\Leftrightarrow\left(x+\frac{1}{6}\right)\left(x+\frac{5}{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{6}=0\\x+\frac{5}{2}=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{1}{6}\\x=-\frac{5}{2}\end{cases}}\)
giai pt : x^4+2x^3+5x^2+4x-12=0
Phân tích đa thức thành nhân tử , ta đươc :
\(x^4+2x^3+5x^2+4x-12=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x^2+x+6\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x_1=-2\\x_2=1\end{array}\right.;x^2+x+6=\left(x+\frac{1}{2}\right)^2+5\frac{3}{4}\ne0\forall x.\)
Vậy pt đã cho các nghiệm : \(x_1=-2;x_2=1.\)
Giai pt : a, 3x+18=0
B, 6x-7=3x+2
C, 2x/x+3+4(x-3)/x =6
a) 3x + 18 = 0
<=> 3*(x+6)=0
<=> x+6=0
<=> x=-6
Vậy S={-6}
6x-7=3x+2
<=> 6x - 3x= 2+7
<=> 3x=9
<=> x=3
Vậy S={ 3}
c) mk ko hỉu rõ đề
a. 4x-3=0
b. -x+2=6
c. -5+4x=10
d. 4x-5=6
h. 1-2x=3
2.a
(x-2).(4+3x)=0
b) (4x-1).3x=0
c) (x-5).(1+2x)=0
d) 3x.(x+2)=0
3)giẳi pt và biu diễn trục số
a) 3(x-4)-2(x-1)≥0
b) 3-2(2x+3)≤9x-4
c) 5-2(1-3x)≥-2x+4
d) 9-3(x-1)≥4x-5
Bài 1. a) 4x - 3 = 0
⇔ x = \(\dfrac{3}{4}\)
KL.....
b) - x + 2 = 6
⇔ x = - 4
KL...
c) -5 + 4x = 10
⇔ 4x = 15
⇔ x = \(\dfrac{15}{4}\)
KL....
d) 4x - 5 = 6
⇔ 4x = 11
⇔ x = \(\dfrac{11}{4}\)
KL....
h) 1 - 2x = 3
⇔ -2x = 2
⇔ x = -1
KL...
Bài 2. a) ( x - 2)( 4 + 3x ) = 0
⇔ x = 2 hoặc x = \(\dfrac{-4}{3}\)
KL......
b) ( 4x - 1)3x = 0
⇔ x = 0 hoặc x = \(\dfrac{1}{4}\)
KL.....
c) ( x - 5)( 1 + 2x) = 0
⇔ x = 5 hoặc x = \(\dfrac{-1}{2}\)
KL.....
d) 3x( x + 2) = 0
⇔ x = 0 hoặc x = -2
KL.....
Bài 3.a) 3( x - 4) - 2( x - 1) ≥ 0
⇔ x - 10 ≥ 0
⇔ x ≥ 10
b) 3 - 2( 2x + 3) ≤ 9x - 4
⇔ - 4x - 3 ≤ 9x - 4
⇔ 13x ≥1
⇔ x ≥ \(\dfrac{1}{13}\)