Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lilian Amerina
Xem chi tiết
Nguyễn Tuấn
Xem chi tiết
Đỗ Trang
Xem chi tiết
Đỗ Trang
24 tháng 10 2021 lúc 19:08

Thì nha ko phải thìa 😅

Đỗ Trang
24 tháng 10 2021 lúc 19:26

Mà a1/a2018 thay bằng a1/a2021 nha 😅

Lê Khổng Bảo Minh
Xem chi tiết
Hoàng Tử Hà
27 tháng 2 2021 lúc 2:06

\(=\lim\limits\dfrac{n^2+an+2020-n^2}{\sqrt{n^2+an+2020}+n}+\lim\limits\dfrac{n^3-bn^3-6n^2-3n-2021}{n^2+\sqrt[3]{\left(bn^3+6n^2+3n+2021\right)^2}+n\sqrt[3]{bn^3+6n^2+3n+2021}}\)

\(=\lim\limits\dfrac{\dfrac{an}{n}+\dfrac{2020}{n}}{\sqrt{\dfrac{n^2}{n^2}+\dfrac{an}{n^2}+\dfrac{2020}{n^2}}+\dfrac{n}{n}}+\lim\limits\dfrac{\dfrac{\left(1-b\right)n^3}{n^2}-\dfrac{6n^2}{n^2}-\dfrac{3n}{n^2}-\dfrac{2021}{n^2}}{\dfrac{n^2}{n^2}+\dfrac{\sqrt[3]{\left(bn^3+6n^2+3n+2021\right)^2}}{n^2}+\dfrac{n\sqrt[3]{bn^3+6n^2+3n+2021}}{n^2}}\)

\(=\dfrac{1}{2}a+\lim\limits\dfrac{\left(1-b\right)n-6}{1+\sqrt[3]{b^2}+\sqrt[3]{b}}\)

De gioi han bang 0 thi \(\left(1-b\right)=0\Leftrightarrow b=1\Rightarrow\lim\limits\dfrac{\left(1-b\right)n-6}{1+\sqrt[3]{b^2}+\sqrt[3]{b}}=-\dfrac{6}{3}=-2\)

\(\Rightarrow\dfrac{1}{2}a-2=0\Leftrightarrow a=4\)

\(\Rightarrow P=4^{2020}+2^{2021}-1\)

P/s: Tổng này hỏi có bao nhiêu chữ số thì tui còn tìm được, chứ viết hẳn ra thì..chắc nhờ siêu máy tính của nasa :v

Nguyễn Việt Bách
Xem chi tiết
Akai Haruma
18 tháng 11 2023 lúc 20:23

Lời giải:

$a^{100}+b^{100}=a^{101}+b^{101}=a^{102}+b^{102}$

$\Rightarrow (a^{101}+b^{101})^2=(a^{100}+b^{100})(a^{102}+b^{102})$

$\Rightarrow a^{202}+b^{202}+2a^{101}.b^{101}=a^{202}+b^{202}+a^{100}b^{102}+a^{102}b^{100}$

$\Rightarrow 2a^{101}b^{101}=a^{100}b^{102}+a^{102}b^{100}$

$\Rightarrow a^{100}b^{100}(a^2+b^2-2ab)=0$

$\Rightarrow a^{100}b^{100}(a-b)^2=0$

$\Rightarrow a=0$ hoặc $b=0$ hoặc $a=b$

Nếu $a=0$ thì:

$b^{100}=b^{101}=b^{102}$

$\Rightarrow b^{100}(b-1)=0$

$\Rightarrow b=0$ hoặc b=1$ (đều tm) 

$\Rightarrow a^{2022}+b^{2023}=0$ hoặc $1$

Nếu $b=0$ thì tương tự, $a=0$ hoặc $a=1$

$\Rightarrow a^{2022}+b^{2023}=0$ hoặc $1$

Nếu $a=b$ thì thay $a=b$ vào điều kiện đề thì:

$2b^{100}=2b^{101}=2b^{102}$

$\Rightarrow b^{100}=b^{101}=b^{102}$

$\Rightarrow b^{100}(b-1)=0$

$\Rightarrow b=0$ hoặc $b=1$ (đều tm) 

Nếu $a=b=0\Rightarrow a^{2022}+b^{2023}=0$

Nếu $a=b=1\Rightarrow a^{2022}+b^{2023}=2$

Vậy $a^{2022}+b^{2023}$ có thể nhận giá trị $0,1,2$

Vũ Anh Khôi
27 tháng 6 lúc 15:17

=2 nha

Đỗ Nguyễn Bảo Ngọc
Xem chi tiết
Đỗ Nguyễn Bảo Ngọc
8 tháng 1 2021 lúc 22:26

{a22​=a1​.a3​a32​=a2​.a4​​\Rightarrow{a2a3=a1a2a3a4=a2a3{a2a3=a1a2a3a4=a2a3⇒{a3​a2​​=a2​a1​​a4​a3​​=a3​a2​​​\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}⇒a2​a1​​=a3​a2​​=a4​a3​​

\Rightarrow\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1}{a_2}.\frac{a_2}{a_3}=\frac{a_3}{a_4}=\frac{a_1}{a_4}\left(1\right)⇒a23​a13​​=a33​a23​​=a43​a33​​=a2​a1​​.a3​a2​​=a4​a3​​=a4​a1​​(1)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}\left(2\right)a23​a13​​=a33​a23​​=a43​a33​​=a23​+a33​+a43​a13​+a23​+a33​​(2)

Từ (1) và (2) \Rightarrow\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\frac{a_1}{a_4}\left(đpcm\right)⇒a23​+a33​+a43​a13​+a23​+a33​​=a4​a1​​(đpcm)

Khách vãng lai đã xóa
Dương Tiến	Khánh
Xem chi tiết
Hà Việt Anh
Xem chi tiết
Lumina
Xem chi tiết
Lumina
15 tháng 7 2021 lúc 14:25
Giúp mình với =(^•-•^)=
Khách vãng lai đã xóa