Những câu hỏi liên quan
NGUUYỄN NGỌC MINH
Xem chi tiết
NGUUYỄN NGỌC MINH
Xem chi tiết
Nguyễn Nhật Minh
13 tháng 12 2015 lúc 12:19

\(VT=\frac{x^2}{x^3-xyz-2013x}+\frac{y^2}{y^3-xyz-2013y}+\frac{z^2}{z^3-xyz-2013z}\ge\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz-2013\left(x+y+z\right)}\)

\(=\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3+3\left[\left(x+y+z\right)\left(xy+yz+zx\right)-xyz\right]}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\frac{1}{x+y+z}\)=VP

 

Bình luận (0)
NGUUYỄN NGỌC MINH
13 tháng 12 2015 lúc 17:43

đúng rồi ạ nhưng chỉ cần c/m đẳng thức phụ như thế này thôi ạ\(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\) =>\(\frac{\left(a+b\right)2}{x+y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) hay \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) là xong

Bình luận (0)
trần xuân quyến
Xem chi tiết
Nghĩa Nguyễn Văn
17 tháng 2 2019 lúc 21:27

Đk: $x\geq \frac{1}{2}$

Pt $\Leftrightarrow 4x^2+3x-7=4(\sqrt{x^3+3x^2}-2)+2(\sqrt{2x-1}-1)$

$\Leftrightarrow +4\frac{(x-1)(x+2)^2}{\sqrt{x^3+3x^2}+2}+4\frac{x-1}{\sqrt{2x-1}+1}-(x-1)(4x+7)=0$

$\Leftrightarrow (x-1)[\frac{4(x+2)^2}{\sqrt{x^3+3x^2}+2}+\frac{4}{\sqrt{2x-1}+1}-(4x+7)]=0$

$\Leftrightarrow x=1\vee \frac{4(x+2)^2}{\sqrt{x^3+3x^2}+2}+\frac{4}{\sqrt{2x-1}+1}-4x-7=0$ $(*)$

Xét hàm số $f(x)=\frac{4(x+2)^2}{\sqrt{x^3+3x^2}+2}+\frac{4}{\sqrt{2x-1}+1}-4x-7,x\in [\frac{1}{2};+\infty )$ thì $f(x)>0,\forall x\in [\frac{1}{2};+\infty )$

$\Rightarrow $ Pt $(*)$ vô nghiệm

Bình luận (0)
Con Heo
Xem chi tiết
Lê Thanh Nhàn
Xem chi tiết
Lê Thanh Nhàn
13 tháng 6 2020 lúc 23:26

@Nguyễn Việt Lâm

Bình luận (0)
Nguyễn Việt Lâm
13 tháng 6 2020 lúc 23:44

Bunhiacopxki: \(\left(x^2+yz+zx\right)\left(y^2+yz+zx\right)\ge\left(xy+yz+zx\right)^2\)

\(\Rightarrow\frac{xy}{x^2+yz+zx}\le\frac{xy\left(y^2+yz+zx\right)}{\left(xy+yz+zx\right)^2}\)

Thiết lập tương tự và cộng lại:

\(\Rightarrow VT\le\frac{xy\left(y^2+yz+zx\right)+yz\left(z^2+xy+zx\right)+zx\left(x^2+yz+xy\right)}{\left(xy+yz+zx\right)^2}\)

\(VT\le\frac{xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz}{\left(xy+yz+zx\right)^2}\)

Ta chỉ cần chứng minh: \(\frac{xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz}{\left(xy+yz+zx\right)^2}\le\frac{x^2+y^2+z^2}{xy+yz+zx}\)

\(\Leftrightarrow xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz\le\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)\)

\(\Leftrightarrow x^2yz+xy^2z+xyz^2\le x^3y+y^3z+z^3x\)

\(\Leftrightarrow\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}\ge x+y+z\) (đúng theo Cauchy-Schwarz)

Dấu "=" xảy ra khi \(x=y=z\)

Bình luận (0)
Baek Hyun
Xem chi tiết
Thanh Tùng DZ
29 tháng 5 2019 lúc 11:03

https://diendantoanhoc.net/topic/167390-cmr-sum-fracx3y38geq-frac19frac227xyyzzx/ 

bạn tham khảo nhé

Bình luận (0)
Lê Thanh Nhàn
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 6 2020 lúc 17:19

BĐT của bạn bị ngược dấu, mà có vẻ các mẫu số cũng ko đúng (để ý mẫu số thứ 2 và thứ 3 đều có chung xy+xz ko hợp lý)

Bình luận (0)
Phạm Tuấn Kiệt
Xem chi tiết
i love you
24 tháng 1 2018 lúc 20:45

v~~ ko thằng admin :(( t làm cái bài này mất gần 30 phút mà bây giờ nó éo hiện câu trả lời của tao ???? hận quá đi 

Bình luận (0)
i love you
24 tháng 1 2018 lúc 20:39

bài này easy lắm bạn ơi :(( 

áp dụng BDT (Am-ag) mẫu ta có

\(\left(x^2+y^2\right)\ge2\sqrt{x^2y^2}=2xy\) rồi thay vào

suy ra   \(\frac{1}{x^2+y^2+2}\le\frac{1}{2xy+2}\)

\(\left(y^2+z^2\right)\ge2yz\)

suy ra \(\frac{1}{y^2+z^2+2}\le\frac{1}{2yz+2}\)

tượng tự vs  BDT con lại rồi + vế vs vế ta được

\(VT\le\frac{1}{2xy+2}+\frac{1}{2yz+2}+\frac{1}{2xz+2}=\frac{1}{xy+xy+1+1}+\frac{1}{yz+yz+1+1}+\frac{1}{xz+xz+1+1}\)

gọi cái  \(\frac{1}{yz+yz+1+1}+.........=Pain\)

áp dụng cosi sáp cho 4 số ta được

\(\frac{1}{xy+xy+1+1}\le\frac{1}{16}\left(\frac{1}{xy}+\frac{1}{xy}+\frac{1}{1}+\frac{1}{1}\right)\)

\(\frac{1}{yz+yz+1+1}\le\frac{1}{16}\left(\frac{1}{yz}+\frac{1}{yz}+\frac{1}{1}+\frac{1}{1}\right)\)

\(\frac{1}{xz+xz+1+1}\le\frac{1}{16}\left(\frac{1}{xz}+\frac{1}{xz}+\frac{1}{1}+\frac{1}{1}\right)\)

+ vế với vế ta được

\(VT\le Pain\le\frac{1}{16}\left(\frac{2}{xz}+\frac{2}{yz}+\frac{2}{xy}+\frac{2}{2}+\frac{2}{2}+\frac{2}{2}\right)\)

\(VT\le PAIN\le\frac{1}{8}\left(\frac{1}{xz}+\frac{1}{yz}+\frac{1}{xy}+1+1+1\right)\)

bây giờ m đi chứng minh cái \(\frac{1}{zy}+\frac{1}{yz}+\frac{1}{xy}\ge3\) chắc là m làm được

áp dụng BDT cô si ta có

\(\frac{1}{xz}+xz\ge2\)

\(\frac{1}{yz}+yz\ge2\)

\(\frac{1}{xz}+zx\ge2\)

+ vế với vế ta được

\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}+xy+yz+zx\ge6\)

mà đề bài cho xy+yz+xz=3 suy ra

\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\ge3\)

nhưng mà nó trái dấu oy :(( kệ nhé cứ thay vào nhé không sao hết bạn oy :)

thay vào ta được

\(VT\le PAIN\le\frac{1}{8}\left(3+3\right)=\frac{3}{4}\)

ĐIỀU CẦN PHẢI CHỨNG MINH :(( 

Bình luận (0)
Phạm Tuấn Kiệt
24 tháng 1 2018 lúc 22:22

dù sai dấu nhưng mình vẫn k :)

Bình luận (0)
Xem chi tiết
Akai Haruma
25 tháng 1 2018 lúc 13:53

Lời giải:

Ta có:

\(\text{VT}=\frac{1}{x^2+y^2+2}+\frac{1}{y^2+z^2+2}+\frac{1}{z^2+x^2+2}\)

\(\Rightarrow 2\text{VT}=\frac{2}{x^2+y^2+2}+\frac{2}{y^2+z^2+2}+\frac{2}{z^2+x^2+2}\)

\(2\text{VT}=1-\frac{x^2+y^2}{x^2+y^2+2}+1-\frac{y^2+z^2}{y^2+z^2+2}+1-\frac{z^2+x^2}{z^2+x^2+2}\)

\(2\text{VT}=3-\left(\frac{x^2+y^2}{x^2+y^2+2}+\frac{y^2+z^2}{y^2+z^2+2}+\frac{z^2+x^2}{z^2+x^2+2}\right)=3-A\)

Áp dụng BĐT Cauchy-Schwarz:

\(A\geq \frac{(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2})^2}{2(x^2+y^2+z^2)+6}=\frac{(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2})^2}{2(x^2+y^2+z^2+xy+yz+xz)}(*)\)

Xét tử số:

\((\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2})^2\)

\(=2(x^2+y^2+z^2)+2(\sqrt{(x^2+y^2)(x^2+z^2)}+\sqrt{(x^2+y^2)(y^2+z^2)}+\sqrt{(y^2+z^2)(z^2+x^2)})\)

Áp dụng BĐT Bunhiacopxky:

\(\sqrt{(x^2+y^2)(x^2+z^2)}\geq \sqrt{(x^2+yz)^2}=x^2+yz\)

\(\sqrt{(x^2+y^2)(y^2+z^2)}\geq \sqrt{(xz+y^2)^2}=xz+y^2\)

\(\sqrt{(y^2+z^2)(z^2+x^2)}\geq \sqrt{(z^2+xy)^2}=z^2+xy\)

\(\Rightarrow \sum \sqrt{(x^2+y^2)(x^2+z^2)}\geq x^2+y^2+z^2+xy+yz+xz\)

\(\Rightarrow (\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2})^2\geq 4(x^2+y^2+z^2)+2(xy+yz+xz)\)

\(\geq 3(x^2+y^2+z^2)+3(xy+yz+xz)=3(x^2+y^2+z^2+xy+yz+xz)\)

(theo BĐT AM-GM)

Do đó: Từ \((*)\Rightarrow A\geq \frac{3(x^2+y^2+z^2+xy+yz+xz)}{2(x^2+y^2+z^2+xy+yz+xz)}=\frac{3}{2}\)

\(\Rightarrow 2\text{VT}\leq 3-\frac{3}{2}=\frac{3}{2}\)

\(\Rightarrow \text{VT}\leq \frac{3}{4}\) (đpcm)

Dấu bằng xảy ra khi \(x=y=z=1\)

Bình luận (0)
Lightning Farron
26 tháng 1 2018 lúc 13:31

We have: \(\dfrac{1}{x^2+y^2+2}=\dfrac{1}{x^2+y^2+z^2+2-z^2}\le\dfrac{1}{5-z^2}\)

Similarly and by adding them:

\(\dfrac{1}{5-x^2}+\dfrac{1}{5-y^2}+\dfrac{1}{5-z^2}\le\dfrac{3}{4}\left(\circledast\right)\)

We know that \(\dfrac{1}{5-x^2}\le\dfrac{3\left(x^2+x\right)}{8\left(x^2+x+1\right)}\)

\(\Leftrightarrow-\dfrac{\left(x-1\right)^2\left(3x^2+9x+8\right)}{8\left(x^2-5\right)\left(x^2+x+1\right)}\le0\) It's obviously

\(\Rightarrow L.H.S_{\left(\circledast\right)}\le\dfrac{3}{8}\left(\dfrac{x^2+x}{x^2+x+1}+\dfrac{y^2+y}{y^2+y+1}+\dfrac{z^2+z}{z^2+z+1}\right)\le\dfrac{3}{4}\)

The equality occur when \(x=y=z=1\)

Done!

Bình luận (7)