Giúp mình đi aaaaaaaaaaa
Bt: Cho điểm M(1-2t; t+1). Tìm điểm M sao cho x2M + y2M nhỏ nhất.
cho đường thẳng d:{(x=-2-2t),(y=1+2t):} ; M(3;1) tìm tọa độ điểm H và hình chiếu của M lên d tìm tọa độ điểm M' là điểm đối của M qua d
cho đường thẳng d:\(\left\{{}\begin{matrix}x=-2-2t\\y=1+2t\end{matrix}\right.\)và điểm M (3;1)
cho hàm số y=(m^2-5m+1)x+2m-6
Tìm m để đồ thị hàm số đi qua điểm A(2;-1)
(giúp mình với ạ)
Thay x=2 và y=-1 vào (d),ta được:
2(m^2-5m+1)+2m-6=-1
=>2m^2-10m+2+2m-6+1=0
=>2m^2-8m-3=0
=>\(m=\dfrac{4\pm\sqrt{22}}{3}\)
cho điểm M(1-2t; 1+t) tìm M sao cho xM^2+yM^2 nhỏ nhất
\(A=x_M^2+y_M^2=\left(1-2t\right)^2+\left(1+t\right)^2\)
\(A=5t^2-2t+2=5\left(t-\frac{1}{5}\right)^2+\frac{9}{5}\ge\frac{9}{5}\)
\(A_{min}=\frac{9}{5}\) khi \(t=\frac{1}{5}\Rightarrow M\left(\frac{3}{5};\frac{6}{5}\right)\)
Cho 3 đường thẳng m,n,p cùng đi qua một điểm và 3 đường thẳng m,n,q cùng đi qua một điểm. Hãy chứng tỏ cả 4 đường thẳng m,n,p,q cùng đi qua 1 điểm
Giải gnhanh giúp mik nhé Chiều nay mình đi học rồi .
Trong không gian Oxyz, cho đường thẳng d đi qua M(4;3;1) và song song với đường thẳng Δ: x = 1 + 2t, y = 1 - 3t, z = 3 + 2t. Phương trình chính tắc của đường thẳng d là:
A. x - 1 1 = y - 2 - 2 = z + 3 3
B. x - 1 - 1 = y + 2 - 2 = z - 3 3
C. x + 1 - 1 = y - 2 - 2 = z + 3 3
D. x + 1 - 1 = y + 2 - 2 = z - 3 3
Đáp án B
Đường thẳng ∆ có vecto chỉ phương u → (2; -3; 2)
Đường thẳng d đi qua M(4;3;1) và song song với đường thẳng ∆ nên có vecto chỉ phương là u → (2; -3; 2). Phương trình chính tắc của đường thẳng d là:
cho đường thẳng \(\Delta\) có pt \(\left\{{}\begin{matrix}x=-2-2t\\y=1+2t\end{matrix}\right.\)và M(3;1)
a) Tìm điểm A thuộc Δ sao cho AM=\(\sqrt{13}\)b)Tìm điểm B thuộc Δ sao cho đoạn MB ngắn nhất
Do A thuộc \(\Delta\) nên tọa độ có dạng \(A\left(-2-2t;1+2t\right)\Rightarrow\overrightarrow{AM}=\left(2t+5;-2t\right)\)
\(\Rightarrow AM=\sqrt{\left(2t+5\right)^2+\left(-2t\right)^2}=\sqrt{13}\)
\(\Leftrightarrow8t^2+20t+25=13\)
\(\Leftrightarrow8t^2+20t+12=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=-\dfrac{3}{2}\end{matrix}\right.\)
Có 2 điểm A thỏa mãn: \(\left[{}\begin{matrix}A\left(0;-1\right)\\A\left(1;-2\right)\end{matrix}\right.\)
b. Do B thuộc \(\Delta\) nên tọa độ có dạng \(B\left(-2-2t;1+2t\right)\Rightarrow\overrightarrow{BM}=\left(2t+5;-2t\right)\)
\(MB=\sqrt{\left(2t+5\right)^2+\left(-2t\right)^2}=\sqrt{8t^2+20t+25}=\sqrt{8\left(t+\dfrac{5}{4}\right)^2+\dfrac{25}{2}}\ge\sqrt{\dfrac{25}{2}}\)
Dấu "=" xảy ra khi \(t+\dfrac{5}{4}=0\Leftrightarrow t=-\dfrac{5}{4}\Rightarrow B\left(\dfrac{1}{2};-\dfrac{3}{2}\right)\)
Trong mặt phẳng Oxy có △1: \(\left\{{}\begin{matrix}x=1+t\\y=4-2t\end{matrix}\right.\)và △2 : x-3y+9=0 , điểm P(-1;3) . Đường thẳng d đi qua P và cắt △1,△2 tại A , B sao cho P là trung điểm của AB .Tính khoảng cách từ M(1;-1) đến đường thẳng d
Bài 8: Trong mặt phẳng tọa độ Oxy, cho đường thẳng d:\(\left\{{}\begin{matrix}x=-2-2t\\y=1+2t\end{matrix}\right.\left(t\in R\right)\) và điểm A(3;1).
1) Viết phương trình đường thẳng d’ đi qua A và vuông góc với đường thẳng d.
2) Tìm tọa độ giao điểm H của đường thẳng d và d’.
3) Xác định tọa độ điểm A’ đối xứng với A qua đường thẳng d.
4) Tìm tọa độ điểm M nằm trên đường thẳng d sao cho tổng khoảng cách MA+MO là nhỏ nhất.
5) Viết phương trình đường tròn (C) có tâm I nằm trên đường thẳng d và đi qua hai điểm A, O.
1: (d): x=-2-2t và y=1+2t nên (d) có VTCP là (-2;2)=(-1;1) và đi qua B(-2;1)
=>(d') có VTPT là (-1;1)
Phương trình (d') là;
-1(x-3)+1(y-1)=0
=>-x+3+y-1=0
=>-x+y+2=0
2: (d) có VTCP là (-1;1)
=>VTPT là (1;1)
Phương trình (d) là:
1(x+2)+1(y-1)=0
=>x+y+1=0
Tọa độ H là;
x+y+1=0 và -x+y+2=0
=>x=1/2 và y=-3/2