Tìm n thuộc Z sao cho:
a) n2 + n - 13 chia hết cho n + 13
b) n2 + 3 chia hết cho n - 1
Bài 4: Tìm số tự nhiên n sao cho:
a) 4n - 5 chia hết cho 2n - 1
b) n2 + 3n + 1 chia hết cho n +1
a,
Ta có: 4n-5 chia hết cho 2n-1
=>4n-2-3 chia hết cho 2n-1
=>2.(2n-1)-3 chia hết cho 2n-1
=>3 chia hết cho 2n-1
=>2n-1=Ư(3)=(-1,-3,1,3)
=>2n=(0,-2,2,4)
=>n=(0,-1,1,2)
Vậy n=0,-1,1,2
Tìm các số nguyên n sao cho:
a) n2 – 10 chia hết cho n – 1
b) n2 + 4n + 13 chia hết cho n + 2
Tìm n thuộc Z sao cho:
a)3n+2 chia hêt cho n-1
b)n2+2n-7 chia hết cho n+2
3n+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
=>5 chia hết cho n-1
=>n-1 E Ư(5)={-1;1;-5;5}
+)n-1=-1=>n=0
+)n-1=1=>n=2
+)n-1=-5=>n=-4
+)n-1=5=>n=6
vậy...
\(n^2+2n-7:n+2=>n\left(n+2\right)-7:n+2\) ) (: là chia hết)
=>-7 chia hết cho n+2
=>n+2 E Ư(-7)={-1;1;-7;7}
+)n+2=-1=>n=1
+)n+2=1=>n=3
+)n+2=-7=>n=-5
+)n+2=7=>n=9
vậy...
tick nhé
Cho A = (n -1) (n-1) (n2-1)(n thuộc Z )1) CM:A chia hết 3
Nếu n chia hết cho 3 => n^2 chia hết cho 3 => A không chia hết cho 3
nếu A chia hết cho 3 dư 1 => n-1 chia hết cho A => A chia hết cho 3
Nếu n :3 dư 2 => n+1 chia hết cho 3 => a chia hết cho 3
Vậy A chia hết cho 3 với mọi n
tìm n thuộc Z
a, n2 +3n -13 chia hết n + 3
\(n^2+3n-13⋮n+3\)
Mà \(n+3⋮n+3\)
\(\Leftrightarrow\left\{{}\begin{matrix}n^2+3n-13⋮n+3\\n^2+3n⋮n+3\end{matrix}\right.\)
\(\Leftrightarrow13⋮n+3\)
\(\Leftrightarrow n+3\inƯ\left(13\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}n+3=1\\n+3=13\\n+3=-1\\n+3=-13\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}n=-2\\n=10\\n=-4\\n=-16\end{matrix}\right.\)
Vậy ..
n2+3n−13⋮n+3
Mà n+3⋮n+3
⇔{n2+3n−13⋮n+3n2+3n⋮n+3
⇔13⋮n+3
⇔n+3∈Ư(13)
⇔[n+3=1n+3=13n+3=−1n+3=−13
⇔[n=−2n=10n=−4n=−16
Vậy ..
Tìm số tự nhiên n , sao cho :
a) n+4 chia hết cho n+1
b) n2+4chia hết cho n+2
c) 13n chia hết cho n-1
c) 13n⋮n-1
13n-13+13⋮n-1
13n-13⋮n-1 ⇒13⋮n-1
n-1∈Ư(13)
Ư(13)={1;-1;13;-13}
⇒n∈{2;0;14;-12}
b) Bạn tham khảo nha: https://olm.vn/hoi-dap/detail/99050878351.html
a: Ta có: \(n+4⋮n+1\)
\(\Leftrightarrow3⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1;3;-3\right\}\)
\(\Leftrightarrow n\in\left\{0;-2;2;-4\right\}\)
mà n là số tự nhiên
nên \(n\in\left\{0;2\right\}\)
b: Ta có: \(n^2+4⋮n+2\)
\(\Leftrightarrow8⋮n+2\)
\(\Leftrightarrow n+2\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
\(\Leftrightarrow n\in\left\{0;2;6\right\}\)
I.CHỨNG MINH :
1) n.(2n+7).(7n+7) chia hết cho 6 (n thuộc N)
2) n3-13n chia hết cho 6 (n thuộc Z)
3) m.n.(m2-n2) chia hết cho 3 (m,n thuộc Z)
LÀM NHANH GIÚP tớ nhá ^_^ Tớ tick
: Tìm n є N sao cho:
a/ n + 6 chia hết cho n + 2
b/ 2n + 3 chia hết cho n – 2
c/ 3n + 1 chia hết cho 11 – 2n
d/ n2 + 4 chia hết cho n + 1
cách khác : a/ n + 6 = (n + 2) + 4 chia het cho n + 2 => 4 chia het cho n + 2 => n + 2 la uoc cua 4
=>ma n + 2 >=2 nen ta co hai truong hop
n + 2 = 4 => n = 2;
n + 2 = 2 => n = 0,
Vay n = 2 ; 0.
b/ Tuong tu cau a
c/ (3n + 1) Chia het cho 11 - 2n => [2(3n + 1) + 3(11 - 2n)] chia het cho 11 - 2n
=> 35 chia het cho 11 - 2n =>
+)11 - 2n = 1 => n = 5
+)11 - 2n = 5 => n = 3
+)11 - 2n = 7 => n = 2
+)11 - 2n = 35 => n < 0 (loai)
+)11 - 2n = -1 => n = 6
+)11 - 2n = - 5 => n = 8
+)11 - 2n = -7 => n = 9
+)11 - 2n = -35 => n=23
Vay : n = 2;3;5;6;8;9;23
d/ B = (n2 + 4):(n + 1) = [(n +1)(n - 1) + 5]:(n + 1) = n - 1 + 5/(n +1)
Do n2 + 4 chia het cho n + 1 => 5 chia het cho n +1 => n = 0;4.
a) n+6 chia hết cho n+2=> n+2 là ước của n+6=>n+2 là Ư(4)={-4,-2,-1,1,2,4}
n+2=-4=>n=-6
n+2=-2=>n=-4
n+2=-1=>n=-3
n+2=1=>n=-1
n+2=2=>n=0
n+2=4=>n=2
vậy x thuộc {-6,-4,-3,-1,0,2}
b) tương tự
a) n + 4 chia hết cho n
vì n chia hết cho n =>để n + 4 chia hết cho n thì 4 phải chia hết cho n
=>n Є {1;2;4}
b/ 3n + 7 chia hết cho n
vì 3n chia hết cho n => để 3n + 7 chia hết cho n thì 7 phải chia hết cho n
=>n Є {1;7}
c) 27 - 5n chia hết cho n
vì 5n chia hêt cho n => để 27 - 5n chia hết cho n thì 27 phải chia hết cho n
=>n Є {1;3; 9;27}
d) n+6 chia hết cho n + 2
ta có n+6= (n+2) +4
vì n+2 chia hết cho n+2 =>để (n+2) +4 chia hết cho n + 2 thì 4 phải chia hết cho n+2
=>(n+2) Є {2;4} (vì n+2 >=2)
=>n Є {0;2}
e) 2n + 3 chia hết cho n + 2 - 2 hay 2n + 3 chia hết cho n
vì 2n chia hết cho n =>để 2n + 3 chia hết cho n thì 3 phải chia hêt cho n
=>n Є {1;3}
f) 3n + 1 chia hết cho 11 - 2n
để 11 -2n >=0 => n Є {0;1;2;3;4;5}
mặt khác để 3n + 1 chia hết cho 11 - 2n thì
3n+1 >= 11-2n =>5n - 2n+1 >=10-2n +1
=>5n >= 10 =>n>=2 => n Є {2;3;4;5}
* với n=2 => 3n+1=7 ; 11-2n=7 =>3n+1 chia hết cho 11-2n vậy n=2 thỏa mãn
*với n=3 => 3n+1=10; 11-2n=5 =>3n+1 chia hết cho 11-2n vậy n=3 thỏa mãn
* với n=4 =>3n+1=13; 11-2n=3 =>3n+1 không chia hết cho 11-2n vậy n=4 không thỏa mãn
*với n=5 =>3n+1=16; 11-2n=1 =>3n+1 chia hết cho 11-2n vậy n=5 thỏa mãn
vậy n Є {2;3;5}
Tìm n є N sao cho:
a/ n + 6 chia hết cho n + 2
b/ 2n + 3 chia hết cho n – 2
c/ 3n + 1 chia hết cho 11 – 2n
d/ n2 + 4 chia hết cho n + 1
a. n + 6 chia hết cho n + 2
=> n + 2 + 4 chia hết cho n + 2
Mà n + 2 chia hết cho n + 2
=> 4 chia hết cho n + 2
=> n + 2 thuộc Ư(4) = {-4; -2; -1; 1; 2; 4}
Mà n thuộc N
=> n thuộc {0; 2}.
b. 2n + 3 chia hết cho n - 2
=> 2n - 4 + 7 chia hết cho n - 2
=> 2.(n - 2) + 7 chia hết cho n - 2
Mà 2.(n - 2) chia hết cho n - 2
=> 7 chia hết cho n - 2
=> n - 2 thuộc Ư(7) = {-7; -1; 1; 7}
Mà n thuộc N
=> n thuộc {1; 3; 9}.
c. 3n + 1 chia hết cho 11 - 2n
=> 3n + 1 chia hết cho -(11 - 2n)
=> 3n + 1 chia hết cho 2n - 11
=> 2.(3n + 1) chia hết cho 2n - 11
=> 6n + 2 chia hết cho 2n - 11
=> 6n - 33 + 35 chia hết cho 2n - 11
=> 3.(2n - 11) + 35 chia hết cho 2n - 11
=> 35 chia hết cho 2n - 11
=> 2n - 11 thuộc Ư(35) = {-35; -7; -5; -1; 1; 5; 7; 35}
Mà n thuộc N
=> n thuộc {2; 3; 5; 6; 8; 9; 23}
d. n2 + 4 chia hết cho n + 1
=> n2 + 4 - n.(n + 1) chia hết cho n + 1
=> n2 + 4 - n2 - n chia hết cho n + 1
=> -n + 4 chia hết cho n + 1
=> -(n - 4) chia hết cho n + 1
=> n - 4 chia hết cho n + 1
=> n + 1 - 5 chia hết cho n + 1
=> 5 chia hết cho n + 1
=> n + 1 thuộc Ư(5) = {-5; -1; 1; 5}
Mà n thuộc N
=> n thuộc {0; 4}.
a)2 vì 2+6 chia hết 2+2 =8 chia hết 4
tìm n thuộc z
n2+5 chia hết n+1
ta thấy:n+1 chia hết cho n+1
=>(n+1)(n+1)chia hết cho n+1
=>n^2+2n+1 chia hết cho n+1
mak n^2+5 chia hết cho n+1
=>(n^2+2n+1)-(n^2+5) chia hết cho n+1
=>2n-4 chia hết cho n+1
=>2n+2-6 chia hết cho n+1
=>6 chia hết cho n+1
=>n+1 thuộc Ư(6)={-1;1;-2;2;-3;3;-6;6}
=>n thuộc{-2;0;-3;1;-4;2;-7;5}
bn làm tương tự cái bn mới đăg hồi nãy đó
=>(n2-1)+1+5 chia hết cho n+1
=>(n-1)(n+1)+6 chia hết cho n+1
Mà (n-1)(n+1) chia hết cho n+1
=>6 chia hết cho n+1
=>n+1 thuộc Ư(6)={1;2;3;6;-1;-2;-3;-6}
=>n thuộc {0;1;2;5;-2;-3;-4;-7}