\(\frac{x^3-16x}{x^4+64x}\)=\(\frac{A}{x^2-4x+16}\)
Tìm A để 2 biểu thức trên= nhau
\(A=\frac{x^4-16}{x^4-4x^3+8x^2-16x-16}\)
a) Tìm giá trị của x để giá trị của biểu thức A xác định
b) Rút gọn A
c) Tìm x để A có giá tri bằng 2
d) Tìm các giá trị nguyên của x để A nhận giá trị nguyên
Cho biểu thức
A=\(\left(\frac{2x+1}{1-2x}-\frac{1-2x}{1+2x}-\frac{16x^2-1}{x^2-1}\right)\div\frac{16x^3-4x}{4x^2-1}\)
a)Rút gọn A
b)Tìm x để A có giá trị dương
Cho biểu thức A=\(\left(\frac{2x+1}{1-2x}-\frac{1-2x}{1+2x}-\frac{16x^2}{4x^2-1}\right):\frac{16x^3-4x}{4x^2-4x+1}\)
a) Tìm ĐKXĐ
b) Rút gọn
c) Tìm x để A có giá trị dương
cho biểu thức p=\(\frac{x^4-16}{x^4-4x^3+8x^2-16x+16}\)
tìm x để p là số nguyên
Điều kiện : \(x\ne2\)
Phân tích tử thức : \(x^4-16=\left(x^2\right)^2-4^2=\left(x^2-4\right)\left(x^2+4\right)=\left(x-2\right)\left(x+2\right)\left(x^2+4\right)\)
Phân tích mẫu thức : \(x^4-4x^3+8x^2-16x+16=\left(x^4-4x^3+4x^2\right)+\left(4x^2-16x+16\right)\)
\(=x^2\left(x^2-4x+4\right)+4\left(x^2-4x+4\right)=\left(x-2\right)^2\left(x^2+4\right)\)
Ta có ; \(P=\frac{\left(x-2\right)\left(x+2\right)\left(x^2+4\right)}{\left(x-2\right)^2\left(x^2+4\right)}=\frac{x+2}{x-2}=\frac{\left(x-2\right)+4}{x-2}=1+\frac{4}{x-2}\)
Để P là số nguyên thì \(x-2\inƯ\left(4\right)\)
\(\Rightarrow x-2\in\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow x\in\left\{-2;0;1;3;4;6\right\}\)
Tìm các giá trị nguyên của x để phân thức sau có giá trị 1 số nguyên:
a, \(\frac{3x^3-4x^2+x-1}{x-4}\)
b,\(\frac{3x^2-x+3}{3x+2}\)
c, \(\frac{2x^3-6x^2+x-8}{x-3}\)
d,\(\frac{x^4-16}{x^4-4x^3+8x^2-16x+16}\)
Cho biểu thức:
\(A=x-\left(\frac{16x-x^2}{x^2-4}+\frac{3+2x}{2-x}-\frac{2-3x}{x+2}\right):\frac{x-1}{x^3+4x^2+4x}\)
1) Rút gọn biểu thức A.
2) Tính giá trị của biểu thức A với các giá trị x thỏa mãn:\(|x^2-3|=3-x\)
Bài 1: Cho biểu thức P = \(\left(\frac{x+4}{x-4}-\frac{x-4}{x+4}+\frac{12x}{16-x^2}\right):\left(1+\frac{17}{x^2-16}\right)\)
a) Rút gọn P
b) Tìm x để P>0
c) So sánh P với 2
Bài 2: Cho biểu thức P=\(\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\frac{x^2-3x}{2x^2-x^3}\)
a) Rút gọn biểu thức P
b) Tính giá trị của P biết /x-5/=2
c) Tìm x để P<0
Bài 3:Cho biểu thức P =\(\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)
a) Tìm điều kiện xác định của P
b) Rút gọn biểu thức P
c) Tìm x để P=\(\frac{-3}{4}\)
d) Tìm giá trị nguyên của x để biểu thức P cũng có giá trị nguyên
1.CHO BIỂU THỨC A=\(\left(\frac{x^2-2x}{2x^2+8}-\frac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\frac{1}{x}-\frac{2}{x^2}\right)\)
a. Tìm x để giá trị của A được xác định. Rút gọn biểu thức A
b. Tìm giá trị nguyến của x để A nhận giá trị nguyên
2. Giaỉ các phương trình sau:
a. \(x\left(x+2\right)\left(x^2+2x+2\right)+1=0\)
b. \(y^2+4^x+2y-2^{x+1}+2=0\)
c. \(\frac{x^2+4x+6}{x+2}+\frac{x^2+16x+72}{x+8}=\frac{x^2+8x+20}{x+4}+\frac{x^2+12x+42}{x+6}\)
tìm A, B, C, D
a, \(\frac{64x^3+1}{16x^2-2}=\frac{A}{4x-1}\)
b, \(\frac{4x^2+3x-7}{B}=\frac{4x+7}{2x-3}\)
c, \(\frac{C}{3x^2-7x+4}=\frac{3-2x}{x-\frac{4}{3}}\)
d, \(\frac{2x-y-1}{4x-2y}=\frac{4x^2-2x-y^2-y}{D}\)