Cho tam giác MNP vuông tại M có MN = 6cm và tan N = 5/12. tính MP,NP
Cho tam giác MNP vuông tại M,có MN = 6cm MP=8cm
a Tính độ dài cạnh Np và chu vi tam giác MNP
b,Tính đường phân giác của góc N cắt Mp tại K. Vẽ KE Vuông góc NP(E thuộc NP)
Chứng minh Tam giác MNK = Tam giác ENK
c, Chứng minh MK <KP
a: NP=10cm
C=MN+MP+NP=24(cm)
b: Xét ΔMNK vuông tại M và ΔENK vuông tại E có
NK chung
\(\widehat{MNK}=\widehat{ENK}\)
Do đó: ΔMNK=ΔENK
c: Ta có: MK=EK
mà EK<KP
nên MK<KP
Cho tam giác MNP vuông cân tại M. Biết NP = 6cm. Tính độ dài MN và MP
cho tam giác MNP vuông tại N có MN = 6cm, Np = 8 cm. Tia phân giác của góc N cắt Mp tại H. Từ H kẻ He vuông góc với Np ( E thuộc NP)
a) Tính đọ dài MP
b) chứng minh: tam giác MNP đồng dạng với tam giác HEP
c) Tính độ dài HM; HP
Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm và tam giác MNP vuông tại M có MN=9cm, NP=15cm.
a) tính cạnh BC và MP
b) tam giác ABC có đồng dạng tam giác MNP không? Vì sao?
Cho tam giác MNP vuông tại M có MN = 6cm, NP = 10cm. Trên MN lấy I, trên MP lấy J.
a, Tính MP
b, Chứng minh rằng IJ<NP
Cho tam giác MNP vuông tại M , đg cao MH , có MN=6cm, NP=10cm.Tính MP, MH, NH
Áp dụng định lý Pitago:
\(MP=\sqrt{NP^2-MN^2}=8\left(cm\right)\)
Áp dụng hệ thức lượng:
\(MH.NP=MN.MP\Rightarrow MH=\dfrac{MN.MP}{NP}=4,8\left(cm\right)\)
Áp dụng định lý Pitaho cho tam giác vuông MNH:
\(NH=\sqrt{MN^2-MH^2}=3,6\left(cm\right)\)
cho tam giác MNP vuông tại M phân giác ND đường cao MH
a)chứng minh tam giác MNP đồng dạng tam giác AMP
b) biết MN=6cm;NP=10cm tính MP;DP
a) Xét ΔMNP và ΔHMP có:
Góc MPN chung
Góc NMP = góc MHP (= \(90^o\))
⇒ ΔMNP ~ ΔHMP (g.g)
b) Áp dụng định lí Pytago vào Δ vuông MNP:
\(MP^2=NP^2-MN^2\)
\(MP^2=10^2-6^2\)
\(MP^2=64\)
⇒ MP = 8
Xét ΔMNP có ND là phân giác ⇒ \(\dfrac{MD}{MN}=\dfrac{DP}{NP}\)
hay \(\dfrac{MD}{6}=\dfrac{DP}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{MD}{6}=\dfrac{DP}{10}=\dfrac{MD+DP}{6+10}=\dfrac{MP}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)
⇒ \(\dfrac{DP}{10}=\dfrac{1}{2}\) ⇒ DP = \(\dfrac{10}{2}\) = 5
Cho tam giác MNP vuông tại M có MP = 20 cm MN = 12 cm Tính NP Cần nhanh chóng
Áp dụng PI-ta-go ta có: \(MP^2+MN^2=NP^2\Rightarrow NP=\sqrt{20^2+12^2}=4\sqrt{34}\)cm
Cho tam giác MNP vuông ở M, đường cao MH, phân giác góc MNP cắt MP tại D. Cho biết MN = 6cm, MP = 8cm. a) Tính NP. Chứng minh Δ H M N và Δ H P M đồng dạng. b) Trên NP lấy điểm E sao cho PE = 4cm. Chứng minh N E 2 = N H . N P c) Tính diện tích Δ P E D