CMR A=n(n+1)(n+2)(n+3)+1 là số chinh phương
cho N=1.2.3+2.3.4+....+n(n+1)(n+2)
cmr: 4N+1 là số chinh phương ∀n∈Z+
N = 1.2.3 + 2.3.4 + ... + n(n+1)(n+2)
4N = 1.2.3.4 + 2.3.4.(5-1) + ... + n(n+1)(n+2)[(n+3)-(n-1)]
4N = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + ... + n(n+1)(n+2)(n+3) - (n-1)(n)(n+1)(n+2)
4N = n(n+1)(n+2)(n+3)
4N + 1 = ( n2 + 3n + 1)2 ( đpcm )
6)
a) Cho a gồm 2n chữ số 1 , b gồm n+1 chữ số 1, c gồm n chữ số 6.CMR a+b+c+8 là số chinh phương
a = 11....11 ( 2n chữ số 1 ) ; b = 1...1 ( n + 1 chữ số 1 ) ; c = 6....6 ( n chữ số 6 )
đặt 11...11 ( n chữ số 1 ) = x \(\Rightarrow\)99...9 ( n chữ số 9 ) = 9x \(\Rightarrow\)10n = 9x + 1
a + b + c + 8 = ( 11....1 . 10n + 11....1 ) + 11..11 + 66...6 + 8
= ( x . ( 9x + 1 ) + x ) + 10x + 1 + 6x + 8
= 9x2 + 18x + 9 = ( 3x + 3 )2 là số chính phương
Tìm số nguyên dương n sao cho A=(n+3)(4n2+14n+7) là 1 số chinh phương
Bài 1: Tìm n thuộc N để:
A= n^2+9 là số chính phương
B= n^2+2014 là số chính phương
C= n(n+3) là số chính phương
Bài 2: CMR: a^2-1 chia hết cho 24 với a là số nguyên tố >3
Bài 3: CMR: n(2n+1)(7n+1) chia hết cho 6 với mọi n thuộc N
a, Vì n \(\in\)N => n2 là số chính phương
mà 9 = 32 là số chính phương
=> n2 + 9 là số chính phương.
Vậy A = n2 + 9 là số chính phương.
CHÚC BẠN HỌC TỐT!!!!
Vì A=n2+9 là SCP
Đặt A=n2+9=m2 (m thuộc N)
<=> 9=m2-n2
<=> 9=(m-n)(m+n)
Vì n thuộc N => m-n thuộc Z, m+n thuộc N
=> m-n,m+n thuộc Ư(9)
mà m+n>m-n
nên \(\left\{{}\begin{matrix}m+n=9\\m-n=1\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}m=5\\n=4\end{matrix}\right.\)(thỏa mãn)
Vậy A là SCP <=>n=4
cho N=\(1.2.3+2.3.4+....+n\left(n+1\right)\left(n+2\right)\)
cmr: 4N+1 là số chinh phương \(\forall n\in Z^+\)
1! + 2! + 3! +....+ n! là số chinh phương
Câu trả lời hay nhất: Với n = 1 thì 1! = 1 = 1² là số chính phương .
Với n = 2 thì 1! + 2! = 3 không là số chính phương
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương .
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.
k cho mk nha
CMR
A= n.(n+1).(n+2).(n+3)+1 là số chính phương
\(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\\ =n\left(n+3\right)\left(n+1\right)\left(n+2\right)+1\\ =\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)
Đặy n2+3n=t
Ta có : \(A=t\left(t+2\right)+1\\ =t^2+2t+1\\ =\left(t+1\right)^2=\left(n^2+3n+1\right)^2\)
là 1 số chính phương
Cmr các số sau là số chính phương
a, A=111...1(n số 1) 222...2(n số 2)5
b,B=111...1(n số 1) 333..3(n số 3) + 222...2(n số 2) 38
Cần gấp ạ:(
CMR
a , A=\(1^2+2^2+3^2+...+100^2\)ko là số chinh phương
b ,B=\(1^2+2^2+3^2+...+56^2\)ko là số chính phương
c , C=1+2+3+...+n là số chính phương