Tìm tất cả các giá trị thực của m để hàm số y = mx+6/2x+m+1 nghịch biến trên khoảng (-1;1)
Tìm tất cả các giá trị thực của tham số m để hàm số y = m x + 4 x + m nghịch biến trên khoảng − ∞ ; 1 .
A. − 2 < m ≤ − 1
B. − 2 ≤ m ≤ − 1
C. − 2 ≤ m < − 1
D. − 2 < m < 1
Tìm tất cả các giá trị thực của tham số m để hàm số y = m x + 4 x + m nghịch biến trên khoảng − ∞ ; 1 .
A. − 2 < m ≤ − 1
B. − 2 ≤ m ≤ − 1
C. − 2 ≤ m < − 1
D. − 2 < m < 1
Đáp án A.
Tập xác định: D = ℝ \ − m . Ta có y ' = m 2 − 4 x + m 2 .
Để hàm số nghịch biến trên khoảng − ∞ ; 1 thì ta phải có
m 2 − 4 < 0 1 ≤ − m ⇔ − 2 < m < 2 m ≤ − 1 ⇔ − 2 < m ≤ − 1
Lưu ý: Với cách cho đáp án như trong câu hỏi này, ta có làm như sau:
- Thử với m = − 2 . Khi đó y = − 2 x + 4 x − 2 = − 2 x − 2 x − 2 = − 2 . Suy ra với m = − 2 thì hàm số không nghịch biến trên − ∞ ; 1 . Từ đó loại được đáp án B và C.
- Thử với m = − 1 . Khi đó y = − x + 4 x − 1 . Ta có y ' = − 3 x − 1 2 < 0 ∀ x ≠ 1 .
Suy ra hàm số nghịch biến trên các khoảng − ∞ ; 1 và 1 ; + ∞ . Vậy A là đáp án đúng.
Tìm tất cả các giá trị thực của tham số m để hàm số y = x + 2 - m x + 1 nghịch biến trên các khoảng mà nó xác định?
A. m ≤ 1 .
B.m<1
C.m<-3
D. m ≤ - 3 .
Tìm tất cả các giá trị thực của tham số m để hàm số y = x + 2 - m x + 1 nghịch biến trên các khoảng mà nó xác định?
A. m ≤ -1
B. m < 1.
C. m < -3.
D. m ≤ -3
Chọn B.
Tập xác định
Có
Hàm số nghịch bến trên mỗi khoảng của tập xác định
Tất cả các giá trị thực của tham số m để hàm số y = m x + 3 m - 2 x + m nghịch biến trên từng khoảng xác định là
A . 1 ⩽ m ⩽ 2
B . 1 < m < 2
C . m ⩾ 1 ; m ⩽ 2
D . m > 1 ; m < 2
Tất cả các giá trị thực của tham số m để hàm số y = m x + 3 m - 2 x + m nghịch biến trên từng khoảng xác định là
A. 1 < m < 2
B. 1 ≤ m < 2
Tìm tất cả các giá trị thực của tham số m để hàm số y = x + 2 - m x + 1 nghịch biến trên mỗi khoảng xác định của nó.
Tìm tất cả các giá trị thực của tham số m để hàm số y = m + 1 x + 2 m + 2 x + m nghịch biến trên khoảng − 1 ; + ∞ .
A. − 1 < m < 2
B. m ≥ 1
C. m < 1 m > 2
D. 1 ≤ m < 2
Tìm tất cả các giá trị thực của tham số m để hàm số y = m + 1 x + 2 m + 2 x + m nghịch biến trên khoảng − 1 ; + ∞ .
A. − 1 < m < 2
B. m ≥ 1
C. m < 1 m > 2
D. 1 ≤ m < 2
Đáp án A
Có y ' = m 2 − m − 2 x + m 2 . Hàm số nghịch biến trên − 1 ; + ∞ ⇔ m 2 − m − 2 < 0 ⇔ m ∈ − 2 ; 1