Tìm x, y \(\in\) N* để : 4x+36=y2
Tìm x, y \bgblack∈\bgblack∈ N* để: 4x+36=y2
tìm x , y \(\in\) N* để 154x =(4x +1) .y
154x=(4x+1).y => \(y=\frac{154x}{4x+1}=>2y=\frac{308x+77-77}{4x+1}=\frac{77\left(4x+1\right)-77}{4x+1}\)
=> \(2y=77-\frac{77}{4x+1}\)
Để y thuộc N* => 77 phải chia hết cho 4x+1
=> 4x+1=(1,7,11,77) => x=(0, 3/2,5/2, 19)
Mà x thuộc N* => x=19 => y=38
Đáp số: x=19, y=38
Ta có: \(154x=\left(4x+1\right)y\)
VT chia hết cho 2, vế phải có 4x + 1 là số lẻ nên y phải là số chẵn. Ta đặt y = 2t (t là số tự nhiên)
Khi đó ta có 77x = (4x + 1)t \(\Rightarrow77x-4tx=t\Rightarrow\left(77-4t\right)x=t\)
Với \(t=\frac{77}{4}\) , ta thấy không thỏa mãn.
Vậy \(t\ne\frac{77}{4}\).
Ta có \(x=\frac{t}{77-4t}\Rightarrow4x=\frac{4t}{77-4t}=\frac{-\left(77-4t\right)+77}{77-4t}\)
\(=\frac{77}{77-4t}-1\)
Do \(x\in N\backslash\left\{0\right\}\Rightarrow4x\in N\backslash\left\{0\right\}\Leftrightarrow\hept{\begin{cases}\frac{77}{77-4t}>1\\77-4t\inƯ\left(77\right)=\left\{1;7;11;77\right\}\end{cases}}\)
\(\Rightarrow t\in\left\{19\right\}\)
Vậy thì y = 38 và x = 19.
Thử lại ta thấy thỏa mãn. Vậy x = 19, y = 38.
1)Tìm x \(\in\) Z để A= \(\frac{7}{x^2-4x+3}\) ko có nghĩa
2) Tìm x,y \(\in\) N: \(2^{x+1}.3^y=36^x\)
3) Tìm số nguyên tố x,y: \(x^2-2y^2=1\)
Trong tất cả các cặp (x; y) thỏa mãn log x 2 + y 2 + 2 ( 4 x + 4 y - 4 ) ≥ 1 . Tìm m nhỏ nhất để tồn tại duy nhất cặp (x; y) sao cho x 2 + y 2 + 2 x - 2 y + 2 - m = 0
A. ( 10 - 2 ) 2
B. 10 + 2
C. ( 10 + 2 ) 2
D. 10 - 2
1/ Tìm \(x;y\in N\text{*}\)để 154x = (4x + 1)y
Tìm x,y thuộc n thoả mãn
x^2(x+4y) + y^2(y+4x) = 36
pt <=> x^3+4x^2y+y^3+4xy^2 = 36
<=> (x^3+y^3)+(4x^2y+4xy^2) = 36
<=> (x+y).(x^2-xy+y^2)+4xy.(x+y) = 36
<=> (x+y).(x^2-xy+y^2+4xy) = 36
<=> (x+y).(x^2+3xy+y^2) = 36
Đến đó bạn dùng ước bội mà giải từng cái nha
Tk mk
Tìm GTNN của các biểu thức sau:
a) M = x2 - 4x + 5
b) N = y2 - y - 3
c) P = x2 + y2 - 4x +y + 7
\(a,M=x^2-4x+5=\left(x-2\right)^2+5\\ \Rightarrow M\ge5\)
Dấu "=" xảy ra \(\Leftrightarrow x=2\)
\(b,N=y^2-y-3=\left(y-\dfrac{1}{2}\right)^2-\dfrac{13}{4}\\ \Rightarrow N\ge-\dfrac{13}{4} \)
Dấu "=" xảy ra \(\Leftrightarrow y=\dfrac{1}{2}\)
\(P=x^2+y^2-4x+y+7=\left(x-2\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{11}{4}\\ \Rightarrow P\ge\dfrac{11}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-\dfrac{1}{2}\end{matrix}\right.\)
a: M=x^2-4x+4+1
=(x-2)^2+1>=1
Dấu = xảy ra khi x=2
b: N=y^2-y+1/4-13/4
=(y-1/2)^2-13/4>=-13/4
Dấu = xảy ra khi y=1/2
c: P=x^2-4x+4+y^2+y+1/4+11/4
=(x-2)^2+(y+1/2)^2+11/4>=11/4
Dấu = xảy ra khi x=2 và y=-1/2
Khi phân tích đa thức x2 + 4x – 2xy – 4y + y2 thành nhân tử, bạn Việt làm như sau:
x2 + 4x – 2xy – 4y + y2 = (x2 - 2xy + y2) + (4x – 4y)
= (x - y)2 + 4(x – y)
= (x – y)(x – y + 4).
Em hãy chỉ rõ trong cách làm trên, bạn Việt đã sử dụng những phương pháp nào để phân tích đa thức thành nhân tử.
x2 + 4x – 2xy – 4y + y2 = (x2-2xy+ y2) + (4x – 4y) → bạn Việt dùng phương pháp nhóm hạng tử
= (x - y)2 + 4(x – y) → bạn Việt dùng phương pháp dùng hằng đẳng thức và đặt nhân tử chung
= (x – y)(x – y + 4) → bạn Việt dùng phương pháp đặt nhân tử chung
Tìm x,y \(\in\) N* để 154x = (4x+1)y
Mọi người giúp mình được hông ? Mơn ♥♥♥