chứng tỏ:
a)x^2+y^2-2x+4y+5 lớn hơn hoặc bằng 0
b)-3x^2+2x-5 nhỏ hơn 0
a.(2x-3) (3x+6) lớn hơn 0
b.(3x+4) (2x-6) nhỏ hơn 0
c.(3x+5) (2x+4) lớn hơn 4
d.(3x+4) (x-2) nhỏ hơn 0
e.(x+4) (2x-4) lớn hơn 0
f.(4x-8) (2x+5) nhỏ hơn 0
g.(2x-3) (3x+6) lớn hơn hoặc bằng 0
h.(3x-7) (x+1) nhỏ hơn hoặc bằng 0
a: (2x-3)(3x+6)>0
=>(2x-3)(x+2)>0
=>x<-2 hoặc x>3/2
b: (3x+4)(2x-6)<0
=>(3x+4)(x-3)<0
=>-4/3<x<3
c: (3x+5)(2x+4)>4
\(\Leftrightarrow6x^2+12x+10x+20-4>0\)
\(\Leftrightarrow6x^2+22x+16>0\)
=>\(6x^2+6x+16x+16>0\)
=>(x+1)(3x+8)>0
=>x>-1 hoặc x<-8/3
f: (4x-8)(2x+5)<0
=>(x-2)(2x+5)<0
=>-5/2<x<2
h: (3x-7)(x+1)<=0
=>x+1>=0 và 3x-7<=0
=>-1<=x<=7/3
Bài 1: Tìm x để
a.(2x-3) (3x+6) lớn hơn 0
b.(3x+4) (2x-6) nhỏ hơn 0
c.(3x+5) (2x+4) lớn hơn 4
d.(3x+4) (x-2) nhỏ hơn 0
e.(x+4) (2x-4) lớn hơn 0
f.(4x-8) (2x+5) nhỏ hơn 0
g.(2x-3) (3x+6) lớn hơn hoặc bằng 0
h.(3x-7) (x+1) nhỏ hơn hoặc bằng 0
ảnh ko theo trật tự và bị thiếu nên mk sẽ gửi lại 1 tấm nx và mong bn thông cảm cho
Chứng minh rằng :
a,2x^2+3xy+2y^2 lớn hơn hoặc bằng 0
b,x^2-xy+3xy^2 lớn hơn hoặc bằng 0
a) Ta có: \(2x^2+3xy+2y^2\)
\(=2\left(x^2+\dfrac{3}{2}xy+y^2\right)\)
\(=2\left(x^2+2\cdot x\cdot\dfrac{3}{4}y+\dfrac{9}{16}y^2+\dfrac{7}{16}y^2\right)\)
\(=2\left(x+\dfrac{3}{4}y\right)^2+\dfrac{7}{8}y^2\ge0\forall x,y\)(đpcm)
Bài 1: Cho 2 số x,y lớn hơn hoặc bằng 0 ; xy=100. Tìm Min 2x+3y.
Bài 2: Cho 2 số x,y lớn hơn hoặc bằng 0 ; 3x+4y=24. Tìm Max xy.
GIÚP MIK VỚI.... ĐAG CẦN GẤP
Bài 1: Cho 2 số x,y lớn hơn hoặc bằng 0 ; xy=100. Tìm Min 2x+3y.
Bài 2: Cho 2 số x,y lớn hơn hoặc bằng 0 ; 3x+4y=24. Tìm Max xy.
Tìm x,y,z biết
1) (x-1)^2 + (2x-y-3)^2 + (y+z)^2 = 0
2) ( 2x+3)^1998 + (3x-5)^2000 nhỏ hơn hoặc bằng 0
Giải pt và bpt:
a) x-2/18 - 2x+5/12 lớn hơn x+6/9 - x-3/6
b) (2x-3)(2x+3) nhỏ hơn hoặc bằng 0
c) (3-2x)(4x+8) lớn hơn hoặc bằng 0
\(\frac{x-2}{18}-\frac{2x+5}{12}>\frac{x+6}{9}-\frac{x-3}{6}\)
\(\Leftrightarrow\frac{2\left(x-2\right)}{36}-\frac{3\left(2x+5\right)}{36}>\frac{4\left(x+6\right)}{36}-\frac{6\left(x-3\right)}{36}\)
\(\Leftrightarrow2x-4-6x-15>4x+24-6x+18\)
\(\Leftrightarrow2x-6x-4x+6x>24+18+4+15\)
\(\Leftrightarrow-2x>61\)
\(\Leftrightarrow x< -\frac{61}{2}\)
Vậy nghiệm của bất phương trình là \(x< -\frac{61}{2}\)
Bài b và c làm cách mình thì dễ hiểu hơn nhiều :3
\(\left(2x-2\right)\left(2x+3\right)\le0\)
TH1 : \(\hept{\begin{cases}2x-3\le0\\2x+3\ge0\end{cases}< =>\hept{\begin{cases}2x\le3\\2x\ge-3\end{cases}}}\)
\(< =>\hept{\begin{cases}x\le\frac{3}{2}\\x\ge-\frac{3}{2}\end{cases}}\)
TH2 : \(\hept{\begin{cases}2x-3\ge0\\2x+3\le0\end{cases}< =>\hept{\begin{cases}2x\ge3\\2x\le-3\end{cases}}}\)
\(< =>\hept{\begin{cases}x\ge\frac{3}{2}\\x\le-\frac{3}{2}\end{cases}}\)
Vậy ...
\(\left(3-2x\right)\left(4x+8\right)\ge0\)
TH1 : \(\hept{\begin{cases}3-2x\ge0\\4x+8\ge0\end{cases}}\)
\(< =>\hept{\begin{cases}3\ge2x\\4x\ge-8\end{cases}< =>\hept{\begin{cases}\frac{3}{2}\ge x\\x\ge-\frac{8}{4}=-2\end{cases}}}\)
TH2 : \(\hept{\begin{cases}3-2x\le0\\4x+8\le0\end{cases}}\)
\(< =>\hept{\begin{cases}3\le2x\\4x\le-8\end{cases}}< =>\hept{\begin{cases}x\ge\frac{3}{2}\\x\ge-2\end{cases}}\)
Vậy ...
Tìm x thỏa mãn cả hai bất phương trình a) 2x/5 + 3-2x/3 lớn hơn hoặc bằng 3x+2/2 b) x/2 + 3-2x/5 lớn hơn hoặc bằng 3x-5/6
giúp mình nha cảm mownnnn ```
a, \(\frac{2x}{5}+\frac{3-2x}{3}\ge\frac{3x+2}{2}\)
\(\Leftrightarrow\frac{12x}{30}+\frac{30-20x}{30}\ge\frac{45x+30}{30}\)
\(\Leftrightarrow12x+30-20x\ge45x+30\)
\(\Leftrightarrow-8x+30\ge45x+30\Leftrightarrow-8x-45x\ge0\)
\(\Leftrightarrow-53x\ge0\Leftrightarrow x\le0\)
Vậy tập nghiệm của BFT là S = { x | x =< 0 }
b, \(\frac{x}{2}+\frac{3-2x}{5}\ge\frac{3x-5}{6}\)
\(\Leftrightarrow\frac{15x}{30}+\frac{18-12x}{30}\ge\frac{15x-25}{30}\)
\(\Leftrightarrow3x+18\ge15x-25\Leftrightarrow43\ge12x\Leftrightarrow x\le\frac{43}{12}\)
Vậy tập nghiệm của BFT là S = { x | x =< 43/12 }
Cho 2x+y=0. Chứng minh x2 + y2 lớn hơn hoặc bằng 5