Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hà Bảo Trâm
Xem chi tiết
Nguyễn Hữu Triết
27 tháng 10 2016 lúc 16:20

bó tay

k nha

xin đó

Nhók Me
27 tháng 10 2016 lúc 16:29

đề sai ròi nhóc ạ

Lãnh Hạ Thiên Băng
27 tháng 10 2016 lúc 16:32

ta có 

A=n^5-n
=n(n^4-1)
=n(n-1)(n+1)(n^2+1)
n(n-1)(n+1) chia hết cho 6(1)
nếu n=5k => A chia hết cho 5.6=30
nếu n=5k+1 =>n -1 chia hết cho 5 =>từ 1=> A chia hết cho 30
Nếu n=5k+2 =>t n^2+1=25k^2+20k+5 chia hết cho 5
từ 1=> A chia hết cho 30
nếu n=5k+3 =>^2+1=25k^2+30k+10 chia hết cho 5
=>A chia hết cho 30
Nếu n=5k+4 =>n+1=5k+5 chia hết cho 5
từ 1=>A chia hết cho 30
Vậy với n nguyên dương thì n^5-n chia hết cho 30

Nguyễn Linh Chi
Xem chi tiết
nthv_.
23 tháng 8 2021 lúc 20:31

Bn tham khảo tại đây nha:

https://hoc247.net/hoi-dap/toan-8/chung-minh-n-5-n-chia-het-cho-30-faq417269.html

Nguyễn Lê Phước Thịnh
23 tháng 8 2021 lúc 20:36

Ta có: \(n^5-n\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

Vì n;n-1;n+1 là ba số tự nhiên liên tiếp 

nên \(n\left(n-1\right)\left(n+1\right)⋮6\)

Vì \(n^5-n⋮5\)

mà \(n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮6\)

nên \(n^5-n⋮30\)

Vũ Quỳnh Thơ
Xem chi tiết
kiss_rain_and_you
17 tháng 10 2015 lúc 22:25

n^5-n= (n-1)n(n+1)(n^2+1)

(n-1)n(n+1) tích 3 số tự nhiên liên tiếp chia hết cho 3(1)

(n-1)n tích 2 ssoo tự nhiên liên tiếp chia hết cho 2(2)

còn n^5 và có cùng chữ số tận cuunfg nên hiệu có chữ sô tận cùng là 0 chia hết cho 5(3)

từ (1)(2)(3) => chia hết cho 30

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 8 2017 lúc 16:34

Tiên Phong Bùi
Xem chi tiết
anime khắc nguyệt
18 tháng 4 2022 lúc 18:13

TK ử đây :  https://hoc247.net/hoi-dap/toan-8/chung-minh-n-5-n-chia-het-cho-30-faq417269.html

Ngô Nhất Khánh
Xem chi tiết
Hoàng Phúc
30 tháng 1 2016 lúc 20:10

7n+4 hay 7n+4?

Minh Hiền
30 tháng 1 2016 lúc 20:12

\(7^{n+4}-7^n=7^n.\left(7^4-1\right)=7^n.\left(2401-1\right)=7^n.2400=7^n.80.30\text{ chia hết cho 30}\)

=> \(7^{n+4}-7^n\text{ chia hết cho 30}\left(đpcm\right)\)

Hoàng Phúc
30 tháng 1 2016 lúc 20:14

làm bên dưới r,kéo xuống

Mai Hồng Ngọc
Xem chi tiết
Nguyễn Tiến Dũng
15 tháng 9 2017 lúc 8:57

\(7^{n+4}-7^n\)

\(\Rightarrow7^n\cdot7^4-7^n\)

\(\Rightarrow7^n\cdot\left(7^4-1\right)\)

\(\Rightarrow7^n\cdot\left(2401-1\right)\)

\(\Rightarrow7^n\cdot2400\)

\(\Rightarrow7^n\cdot30\cdot80⋮30\left(đpcm\right)\)

\(3^{n+2}+3^n\)

\(\Rightarrow3^n\cdot3^2+3^n\)

\(\Rightarrow3^n\cdot\left(3^2+1\right)\)

\(\Rightarrow3^n\cdot\left(9+1\right)\)

\(\Rightarrow3^n\cdot10⋮10\left(đpcm\right)\)

do thanh thuy
Xem chi tiết
Đoàn Đức Hà
29 tháng 1 2021 lúc 23:10

Ta có: \(mn\left(m^{30}-n^{30}\right)=mn\left[\left(m^{30}-1\right)-\left(n^{30}-1\right)\right]=nm\left(m^{30}-1\right)-mn\left(n^{30}-1\right)\)

Do đó, nếu ta chứng minh được với mọi số nguyên dương \(k\)thì \(k\left(k^{30}-1\right)⋮14322\)thì ta sẽ có đpcm. 

Ta có: \(14322=2.3.7.11.31\).

Xét \(p\in\left\{2,3,7,11,31\right\}\). Nếu \(k\)chia hết cho \(p\)thì hiển nhiên \(k\left(k^{30}-1\right)\)chia hết cho \(p\). Nếu \(k\)không chia hết cho \(p\)thì \(k\)nguyên tố với \(p\). Theo định lí Fermat nhỏ, ta có:  \(k^{p-1}-1⋮p\).

Mặt khác, với mọi \(p\in\left\{2,3,7,11,31\right\}\)ta có \(\left(p-1\right)|30\).

Từ đó suy ra: \(k^{30}-1⋮p\).

Do vậy \(k\left(k^{30}-1\right)⋮p\)với mọi \(p\in\left\{2,3,7,11,31\right\}\).

Vậy \(k\left(k^{30}-1\right)⋮14322\).

Từ đây ta có đpcm. 

Khách vãng lai đã xóa
Lê Hồng Ngọc
Xem chi tiết
luu thi tuyet
23 tháng 12 2015 lúc 16:48

Chtt nha!

Mọi ng ơi vào HOC24.VN  hay lắm lun...tick mk nhé

bí ẩn
23 tháng 12 2015 lúc 16:48

Ta biến đổi: 
n^5 - n = n.(n^4 - 1) = n.(n^2 - 1).(n^2 + 1) (*) 
Ở đây áp dụng hằng đẳng thức a^2 - 1 = (a-1).(a+1). 
Tiếp tục: 
(*) = n.(n-1).(n+1).(n^2+1) 

Ta nhận thấy trong 3 thừa số n, n-1, n+1 thì có 1 số chia hết cho 3 vì đây là 3 số tự nhiên liên tiếp. 
Trong 3 số đó cũng phải có một số chẵn nên tích của chúng chia hết cho 2. 
Vì 2 và 3 nguyên tố cùng nhau nên tích 3 số đó sẽ chia hết cho 6. 
Bây giờ ta chứng minh (*) chia hết cho 5 như sau: 

Nếu n chia hết cho 5 thì dĩ nhiên (*) chia hết cho 5. 
Nếu n chia cho 5 dư 1 hoặc dư 4 thì dĩ nhiên n-1 hoặc n+4 tương ứng sẽ chia hết cho 5. 
Nếu n chia cho 5 dư 2 hoặc 3 thì n có dạng : 
n= 5k+2 hoặc 5k + 3 
Khi đó n^2 +1 : 
Hoặc bằng: (5k+2)^2 +1 = 25k^2 + 20k +4 + 1= 5(5k^2 + 4k +1) , dĩ nhiên nó chia hết cho 5. 
Hoặc bằng: (5k+2)^2 +1 = 25k^2 + 30k +9 + 1= 5(5k^2 + 6k +2) , dĩ nhiên nó cũng chia hết cho 5. 
Ở đây ta áp dụng hằng đẳng thức : (a+b)^2 = a^2 + 2ab + b^2 

Vậy với mọi trường hợp khi n chia cho 5 có số dư là bao nhiêu, thì (*) cũng chia hết cho 5. 

(*) chia hết cho 5 và cho 6, mà 5 và 6 nguyên tố cùng nhau nên (*) chia hết cho 30.