cho S=3+ 3mũ1 +3mũ2 +...+3 mũ 40
so sánh tổng s và 3mũ41
cho S =1 +3+3mũ2 +3mũ3+ .......................................................................................................................+ 3 mũ 119
a, tính S
b, cmr S chia hết cho 13
c,cmr S chia hết cho 40
a/
\(3S=3+3^2+3^3+3^4+...+3^{120}\)
\(2S=3S-S=3^{120}-1\Rightarrow S=\frac{3^{120}-1}{2}\)
b/ \(S=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{117}+3^{118}+3^{119}\right)\)
\(S=13+3^3\left(1+3+3^2\right)+...+3^{117}\left(1+3+3^2\right)\)
\(S=13+3^3.13+...+3^{117}.13=13\left(1+3^3+...+3^{117}\right)\) chia hết cho 13
c/
\(S=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^{116}+3^{117}+3^{118}+3^{119}\right)\)
\(S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+...+3^{116}\left(1+3+3^2+3^3\right)\)
\(S=40+3^4.40+...+3^{116}.40=40\left(1+3^4+...+3^{116}\right)\) chia hết cho 40
3mũ1-3mũ2+3mũ3-3mũ4+ . . . +3mũ9-3mũ10+3mũ11
Đặt \(D=3-3^2+3^3-3^4+...+3^9-3^{10}+3^{11}\)
=> \(3D=3^2-3^3+3^4-3^5+...+3^{10}-3^{11}+3^{12}\)
Cộng vế 2 BT trên ta được:
\(D+3D=\left(3-3^2+...+3^{11}\right)+\left(3^2-3^3+...+3^{12}\right)\)
\(\Leftrightarrow4D=3^{12}+3\)
\(\Rightarrow D=\frac{3^{12}+3}{4}\)
Câu 25 : Cho S = 1/3 - 2/3 mũ 2 + 3/3 mũ 3 - 4/3 mũ 4 + ... + 99/3 mũ 99 - 100/3 mũ 100 . Số sánh S và 1/5
tính tích của:
a,3mũ1*3mũ2*3mũ3*......*3mũ100
b,1mũ1*2mũ2*3mũ3*4mũ4*...*100mũ100
a)31x32x33x........x3100
=31+2+3+4+...+100
=3(100+1)x(100-1+1):2
=3101x100:2
=35050
Bài b mình không biết làm
cho tổng s= 3 mũ 1+3 mũ 2+3 mũ 3+......+3 mũ 2017+3 mũ 2018+3 mũ 2019
chứng minh tổng s chia hết cho 3
#)Giải :
\(S=3+3^2+3^3+...+3^{2019}\)
\(\Rightarrow3S=3^2+3^3+3^4+...+3^{2020}\)
\(\Rightarrow3S-S=\left(3^2+3^3+3^4+...+3^{2020}\right)-\left(3+3^2+3^3+...+3^{2019}\right)\)
\(\Rightarrow2S=3^{2020}-3\)
\(\Rightarrow S=\frac{3^{2020}-3}{2}\)
từng số hạng của tổng S chia hết cho 3 nên tổng S chia hết cho 3
cho tổng s= 3 mũ 1+3 mũ 2+3 mũ 3+......+3 mũ 2017+3 mũ 2018+3 mũ 2019
chứng minh tổng s chia hết cho 13
#)Giải :
\(S=3+3^2+3^3+...+3^{2019}\)
\(S=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2017}+3^{2018}+3^{2019}\right)\)
\(S=3\left(1+3+9\right)+3^2\left(1+3+9\right)+...+3^{2017}\left(1+3+9\right)\)
\(S=13\left(3+3^3+...+3^{2017}\right)\)chia hết cho 3 ( đpcm )
s = 3^1 +3^2 + 3^3 +....+ 3^2017 + 3^2018 + 3^2019
= ( 3^1 +3^2 + 3^3) +...+ ( 3^2017 + 3^2018 + 3^2019 ) ( 2019 : 3 =673 # chia hết nên có thể ghép cặp như vậy)
= 3( 1+ 3 +3^2 )+ 3^4( 1+ 3 +3^2)+...+ 3^2017( 1+ 3 +3^2) ( háp dụng tính chất phân phối)
= 13( 3+ 3^4+....+3^2017) => chia hết cho 13
học tốt
\(S=3^1+3^2+3^3+...+3^{2017}+3^{2018}+3^{2019}\)
\(=\left(3^1+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2017}+3^{2018}+3^{2019}\right)\)
\(=3\left(1+3+9\right)+3^4\left(1+3+9\right)+....+3^{2017}\left(1+3+9\right)\)
\(=3.13+3^4.13+...+3^{2017}.13\)
\(=13.\left(3+3^4+...+3^{2017}\right)⋮13\) (đpcm)
cho A =1+3mũ1+3mũ2+3mũ3+..+3mũ2017
a,thu gọn A
b,tìm dư khi chia A cho 13
c,tìm chữ số tận cùng của A
Cho tổng S=1+3+3 mũ 2+3 mũ 3 + 3 mũ 4+... + 3 mũ19+ 3 mũ 20
Chứng tỏ S chia hết cho 13
Số số hạng của S:
20 - 0 + 1 = 21 (số)
Do 21 ⋮ 3 nên ta có thể nhóm các số hạng của S thành từng nhóm mà mỗi nhóm có 3 số hạng như sau:
S = (1 + 3 + 3²) + (3³ + 3⁴ + 3⁵) + ... + (3¹⁸ + 3¹⁹ + 3²⁰)
= 13 + 3³.(1 + 3 + 3²) + ... + 3¹⁸.(1 + 3 + 3²)
= 13 + 3³.13 + ... + 3¹⁸.13
= 13.(1 + 3³ + ... + 3¹⁸) ⋮ 13
Vậy S ⋮ 13
S= 1+3+32+33+34+...+319+320
S= (1+3+32) + (33+34+35) + ... + (318+319+320)
S= 13.1+ 32.(1+3+32) + 317.(1+3+32)
S= 13.1+32.13+317.13
S= 13.(1+32+317) \(⋮\) 13
S\(⋮\) 13
Vậy S\(⋮\) 13
Giúp mình với, mai kiểm tra rồi ạ!
a) Tính:
S = 10 + 12 + 14 +...+2010
b)
S = 1 + 2 + 3 +...+ 999
c) So sánh: 2 mũ 300 và 3 mũ 200
d) So sánh: 3 mũ 300 và 4 mũ 200
c, \(2^{300}\)và \(3^{200}\)
Ta có
\(2^{300}=8^{100}\)
\(3^{200}=9^{100}\)
Vì \(8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)
d, \(3^{300}\)và \(4^{200}\)
Ta có
\(3^{300}=27^{100}\)
\(4^{200}=16^{100}\)
Vì \(16^{100}< 27^{100}\Rightarrow3^{300}>4^{200}\)
a,b mik lười làm quá
a, Ta có: S = 10 + 12 + 14 + ... + 2010
Các số hạng cách đều nhau 2 đơn vị.
Có số số hạng là: ( 2010 - 10 ) / 2 + 1 = 500 (số)
\(\Rightarrow\)S = ( 2010 +10 ) * 500 / 2
\(\Rightarrow\)S = 505000
Vậy S = 505000
b, Ta có: S = 1 + 2 + 3 + ... + 999
Các số hạng cách đều nhau 1 đơn vị.
Có số số hạng là: ( 999 - 1 ) / 1 +1 = 999 (số)
\(\Rightarrow\) S = ( 999 + 1 ) * 999 / 2 = 499500
Vậy S = 499500
c, 2300 và 3200
Ta có: 2300 = (23)100 = 8100
3200 = (32)100 = 9100
Vì 9 > 8 > 1 và 100 > 0
\(\Rightarrow\)9100 > 8100
Hay 2300 = 3200
Vậy 2300 = 3200
d, 3300 và 4200
Ta có: 3300 = (33)100 = 27100
4200 = (42)100 = 16100
Vì 27 > 16 > 1 và 100 > 0
\(\Rightarrow\)27100 > 16100
Hay 3300 > 4200
Vậy 3300 > 4200
Xĩn lỗi nha! Câu c phải giải thế này:
2300 = (23)100 = 8100
3200 = (32)100 = 9100
Vì 1 < 8 < 9 và 100 > 0
\(\Rightarrow\)8100 < 9100
Hay 2300 < 3200
Vậy 2300 < 3200