Tính
(-1/7)0+(-1/7)1+(-1/7)2+......+(-1/7)2007
Tính tổng:s=\(\left(-\dfrac{1}{7}\right)^0+\left(-\dfrac{1}{7}\right)^1+\left(-\dfrac{1}{7}\right)^2+...+\left(-\dfrac{1}{7}\right)^{2007}\)
tính tổng S=(-1/7)^0+(-1/7)^1+....+(-1/7)^2007
TÍNH TỔNG (-1/7)0 + (-1/7)1 + (-1/7)2 + .... + (-1/7)2007
tính tổng S =(-1/7)^0+(-1/7)^1+....+(-1/7)^2007
S=(-1/7)0+(-1/7)1+...+(-1/7)2007
-1/7.S=(-1/7)1+(-1/7)2+...+(-1/7)2008
-1/7.S-S=[(-1/7)1+(-1/7)2+...+(-1/7)2008]-[(-1/7)0+(-1/7)1+...+(-1/7)2007]
-8/7.S=(-1/7)2008-(-1/7)0
-8/7.S=(1/7)2008-1
.........................
(-1/7)0+(-1/7)1+(-1/7)2+......+(-1/7)2007
\(A=\left(-\dfrac{1}{7}\right)^0+\left(-\dfrac{1}{7}\right)^1+...+\left(-\dfrac{1}{7}\right)^{2007}\)
\(\Leftrightarrow-\dfrac{1}{7}A=\left(-\dfrac{1}{7}\right)^1+\left(-\dfrac{1}{7}\right)^2+...+\left(-\dfrac{1}{7}\right)^{2008}\)
\(\Leftrightarrow-\dfrac{8}{7}A=\left(-\dfrac{1}{7}\right)^{2008}-1=\dfrac{1}{7^{2008}}-1=\dfrac{1-7^{2008}}{7^{2008}}\)
\(\Leftrightarrow A=\dfrac{1-7^{2008}}{7^{2008}}\cdot\dfrac{-7}{8}=\dfrac{7^{2008}-1}{8\cdot7^{2007}}\)
{-1/7}^0 + {-1/7}^1 + { -1/7 } ^2 + ... + { -1/7}^2007
\(A=\left(-\dfrac{1}{7}\right)^0+\left(\dfrac{-1}{7}\right)^1+...+\left(-\dfrac{1}{7}\right)^{2007}\)
\(\Leftrightarrow\left(-\dfrac{1}{7}\right)A=\left(-\dfrac{1}{7}\right)^1+\left(-\dfrac{1}{7}\right)^2+...+\left(-\dfrac{1}{7}\right)^{2008}\)
\(\Leftrightarrow-\dfrac{8}{7}A=\left(-\dfrac{1}{7}\right)^{2008}-1\)
\(\Leftrightarrow A=\left(\dfrac{1}{7^{2008}}-\dfrac{7^{2008}}{7^{2008}}\right):\dfrac{-8}{7}=\dfrac{1-7^{2008}}{7^{2008}}\cdot\dfrac{-7}{8}=\dfrac{7^{2008}-1}{8\cdot7^{2007}}\)
(-1/7)^0+(-1/7)^1+(-1/7)^2+...+(-1/7)^2007
tính tổng:S= (-1/7)^0+(-1/7)^1+(-1/7)^2+...+(-1/7)^2007
LM ƠN GIÚP MK NHA! (giải chi tiết)
AI NHANH NHẤT MK SẼ TICK CHO!
S=a^0+a^1+a^2+....+a^2007 (1) <=>a.S=a^1+a^2+a^3+....+a^2007+a^2008 (2) lấy (2) trừ (1) ta được: a.S-S=a^2008-a^0=a^2008-1 <=>S=(a^2008-1)/(a-1) với a=-1/7 ta có: S= (-1/7)^0 + (-1/7)^1+(-1/7)^2 +...+ (-1/7)^2007 =[(-1/7)^2008 -1]/(-1/7 -1)
a) Tính tổng: S = (-1/7)0 + (-1/7)1 + (-1/7)2 +...+ (-1/7)2007
b) Thực hiện phép tính: M = 1 + 1/2*(1+2) + 1/3*(1+2+3) + 1/4*(1+2+3+4) +...+ 1/16*(1+2+3+...+16)
a) \(S=\left(-\frac{1}{7}\right)^0+\left(-\frac{1}{7}\right)^1+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\)
\(=1+\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\)
=> 7S = \(7+\left(-1\right)+\left(-\frac{1}{7}\right)+...+\left(-\frac{1}{7}\right)^{2006}\)
Lấy 7S trừ S ta có :
7S - S = \(7+\left(-1\right)+\left(-\frac{1}{7}\right)+...+\left(-\frac{1}{7}\right)^{2006}-\left[1+\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\right]\)
6S = \(7-1-1+\left(\frac{1}{7}\right)^{2007}=5+\left(\frac{1}{7}\right)^{2007}\Rightarrow S=\frac{5+\left(\frac{1}{7}\right)^{2007}}{6}\)