cho a^2+b^2+c^2=ab+ac+bc. chung minh a=b=c
cho a+b+c=1 chung minh (a+bc)(b+ac)(c+ab)=(a+b)^2(a+c)^2(b+c)^2
tham khảo tại link nek:
https://h.vn/hoi-dap/question/500717.html
~ho ktoost~
cho a^3 b^3 + a^3 c^3 + b^3 c^3 =3a^2 b^2 c^2. chung minh rang (ab+bc)(bc+ac)(bc+ac)=-a^2 b^2 c^2. Giúp mình đi mình tích cho.
cho tam giac ABC biet goc A=120o ;BC=a ;AC=b ;AB=c
chung minh rang a^2=b^2+c^2+bc
Cho a,b,c thuoc Z,biet ab-ac+bc-c^2=1.Chung minh a va b la 2 so doi nhau
Ta có : \(ab-ac+bc-c^2=-1\Leftrightarrow a\left(b-c\right)+\left(b-c\right).c=-1\)
\(\Leftrightarrow\left(a+c\right)\left(b-c\right)=-1\)
Vì : a + c và b - c là hai số đối nhau \(\Rightarrow a+c=-\left(b-c\right)\Leftrightarrow a+c=-b+c\)
\(\Rightarrow a=-b\left(đpcm\right)\)
cho tam giac abc co goc a =2 *goc bva goc b =2* goc c .chung minh bc^2=ac^2+ac*ab
chung minh a^4 +b^4 +c^4=2(ab+bc+ac)^2 biet rang a+b+c=0
a+b+c=0 <=> (a+b+c)2=0
<=>a2+b2+c2+2(ab+bc+ca)=0
<=>a2+b2+c2=-2(ab+bc+ca)
<=>(a2+b2+c2)2=[-2(ab+bc+ca)]2
<=>a4+b4+c4+2(a2b2+b2c2+c2a2)=4(a2b2+b2c2+c2a2)
<=>a4+b4+c4=2(a2b2+b2c2+c2a2) (1)
Lại có (ab+bc+ca)2 = a2b2+b2c2+c2a2+2abc(a+b+c) = a2b2+b2c2+c2a2 (vì a+b+c=0) (2)
Từ (1) và (2) => đpcm
cho a+b+c=2009 chung minh rang \(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-ac-bc}=2009\)
Xét TS
Có a^3 + b^3 + c^3 - 3abc = a^3 + 3a^2b + 3ab^2 + b^2 + c^3 - 3abc - 3a^2b - 3ab^2 = (a + b)^3 + c^3 - 3ab(a + b + c) = (a + b + c)( (a+b)^2 + (a + b)c + c^2 - 3abc) = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ac)
Rút gọn TS/MS được kết quả = a + b + c = 2009 => điều phải chứng minh
cho tam giac ABC nhon, Do dai 3 canh AB,AC,BC lan luot la a,b,c. Chung minh
\(b^2=a^2+c^2+2\cdot a\cdot c\cdot\cos b\)
Ta có hình vẽ như sau:
Trong tam giác vuông ACH có:
AC2=AH2+HC2=AH2+(BC-BH)2=AH2+BC2+BH2-2BCBH
Trong tam giác vuông ABH có:
AH2+BH2=AB2 và BH=AB. cosB hay BH=c.cosB=> ĐPCM
cho a,b,c >0 thoa man a+b+c=3.chung minh (a^2+bc)/(b+ca) + (b^2+ca)/(c+ab) + (c^2+ab)/(a+bc) ≥ 3