Cau 1: Cho tam giac ABC cuong tai A, AB8cm; AC15cm. Ve duong cao AHa) chung minh AB^2 BH. BCb) Tinh BH, CH, AH, BCc) Ve phan giac AD cua tam giac ABC. Chung minh H nam giua B va Dd) Tinh ti so dien tich D HAC va D A.BCCau 2: Cho tam giac ABC vuong tai A, AB5cm; Ac12cm, ve duong cao AH va duong phan giac AD.a) Tinh BC, BDb) Chung minh D ACH: D ABC; tinh AHc) Qua B ke duong thang vuong goc voi AB cat tia AD tai K. Chung minh AB.AD AC. KD.Cau 3: Cho tam giac ABC vuong A co AB 5cm; AC12cm. Ve dcao...
Đọc tiếp
Cau 1: Cho tam giac ABC cuong tai A, AB=8cm; AC=15cm. Ve duong cao AH
a) chung minh AB^2= BH. BC
b) Tinh BH, CH, AH, BC
c) Ve phan giac AD cua tam giac ABC. Chung minh H nam giua B va D
d) Tinh ti so dien tich D HAC va D A.BC
Cau 2: Cho tam giac ABC vuong tai A, AB=5cm; Ac=12cm, ve duong cao AH va duong phan giac AD.
a) Tinh BC, BD
b) Chung minh D ACH: D ABC; tinh AH
c) Qua B ke duong thang vuong goc voi AB cat tia AD tai K. Chung minh AB.AD =AC. KD
.Cau 3: Cho tam giac ABC vuong A co AB = 5cm; AC=12cm. Ve dcao AH va pgiac AD cua goc BAC
a) Tih BC; BD
b) Chung minh D HAC : D ABC
c) Qua B ke duong vgoc voi BA cat AD tai k. Chung minh AB.AD= AC.KD