Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Shenkai
Xem chi tiết
Thẩm Quang Huy
Xem chi tiết
Nguyễn Tấn Phát
17 tháng 5 2019 lúc 20:03

Ta có: \(a=b=c\Rightarrow\hept{\begin{cases}a^3=abc\\a^3=b^3=c^3\end{cases}}\)

Vì \(a^3=b^3=c^3\Rightarrow a^3+b^3+c^3=3a^3\)

\(\Rightarrow a^3+b^3+c^3=3abc\left(đpcm\right)\)

kudo shinichi
17 tháng 5 2019 lúc 21:52

\(a+b+c=0\)

\(\Leftrightarrow a+b=-c\)

\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3=-c^3\)

\(\Leftrightarrow a^3+3ab\left(a+b\right)+b^3+c^3=0\)

\(\Leftrightarrow a^3-3abc+b^3+c^3=0\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

Thượng Hoàng Yến
Xem chi tiết
Wall HaiAnh
1 tháng 7 2018 lúc 14:23

\(a^3+b^3+c^3=3abc\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\left[\left(a^3+b^3\right)+c^3\right]-\left[3ab\left(a+b\right)+3abc\right]=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\frac{\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}{2}=0\)

Vì a+b+c=0 \(\hept{\begin{cases}a>0\\b>0\\c>0\end{cases}}\)

Do đó: \(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}\Rightarrow a=b=c}\)

✓ ℍɠŞ_ŦƦùM $₦G ✓
1 tháng 7 2018 lúc 14:29

Miyuki Misaki cm ngược rồi 
Ta có : a + b + c = 0 

<=> a + b = -c {...........}

<=> (a + b)3 = -c3

<=> a3 + b3 + 3ab(a + b) = -c3

<=> a3 + b3 + c3 = -3ab(a + b) 

<=> a3 + b3 + c3 = -3ab(-c) {vì a + b = -c}

<=>  a3 + b3 + c3 = 3abc

Phạm Thùy Linh
Xem chi tiết
Trịnh Xuân Diện
Xem chi tiết
Đoàn Phương Liên
Xem chi tiết
Nguyễn Tiến Dũng
Xem chi tiết
Nguyễn Châu Anh
Xem chi tiết
Ann Yoongii
Xem chi tiết