Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết
Nguyễn Đức Trí
16 tháng 8 2023 lúc 11:33

a) \(35x^9y^n=5.\left(7x^9y^n\right)\)

Để \(35x^9y^n⋮\left(-7x^7y^2\right)\)

\(\Rightarrow n\in\left\{0;1;2\right\}\)

Nguyễn Đức Trí
16 tháng 8 2023 lúc 11:56

b) \(5x^3-7x^2+x=3x\left(\dfrac{5}{3}x^2-\dfrac{7}{3}x+\dfrac{1}{3}\right)\)

Để \(\left(5x^3-7x^2+x\right)⋮3x^n\)

\(\Rightarrow3x\left(\dfrac{5}{3}x^2-\dfrac{7}{3}x+\dfrac{1}{3}\right)⋮3x^n\)

\(\Rightarrow n\in\left\{0;1\right\}\)

Ly Nguyễn
Xem chi tiết
Nguyễn Mỹ Vân GIang
Xem chi tiết
Nàng tiên cá
Xem chi tiết
Phùng Minh Quân
19 tháng 10 2018 lúc 11:19

\(\left(5x^3-7x^2+x\right):3x^n=\frac{5}{3}x^{3-n}-\frac{7}{3}x^{2-n}+\frac{1}{3}x^{1-n}\)

Để \(\left(5x^3-7x^2+x\right)⋮3x^n\) thì các số mũ của phần biến phải không âm, do đó : 

\(3-n\ge0\)\(\Leftrightarrow\)\(n\le3\)

\(2-n\ge0\)\(\Leftrightarrow\)\(n\le2\)

\(1-n\ge0\)\(\Leftrightarrow\)\(n\le1\)

Mà \(n\inℕ\) nên \(0\le n\le1\)\(\Rightarrow\)\(n\in\left\{0;1\right\}\)

\(\left(13x^4y^3-5x^3y^3+6x^2y^2\right):5x^ny^n=\frac{13}{5}x^{4-n}y^{3-n}-x^{3-n}y^{3-n}+\frac{6}{5}x^{2-n}y^{2-n}\)

Để \(\left(13x^4y^3-5x^3y^3+6x^2y^2\right)⋮5x^ny^n\) thì các số mũ của phần biến phải không âm, do đó : 

\(4-n\ge0\)\(\Leftrightarrow\)\(n\le4\)

\(3-n\ge0\)\(\Leftrightarrow\)\(n\le3\)

\(2-n\ge0\)\(\Leftrightarrow\)\(n\le2\)

Mà \(n\inℕ\) nên \(0\le n\le2\)\(\Rightarrow\)\(n\in\left\{0;1;2\right\}\)

Chúc bạn học tốt ~ 

Nozomi Judo
Xem chi tiết
Trần Quốc Lộc
21 tháng 10 2017 lúc 22:00

Phép nhân và phép chia các đa thức

Lê Minh Thư
4 tháng 11 2018 lúc 21:15

a) \(\left(5x^3-7x^2+x\right):3x^n\)

Để phép tính này chia hết thì

\(\left\{{}\begin{matrix}5x^3⋮3x^n\\-7x^2⋮3x^n\\x⋮3x^n\end{matrix}\right.\Rightarrow n\le1}\)

b) \(\left(13x^4y^3-5x^3y^3+6x^2y^2\right):5x^ny^n\)

Để phép tính này chia hết thì

\(\left\{{}\begin{matrix}13x^4y^3⋮5x^ny^n\\-5x^3y^3⋮5x^ny^n\\6x^2y^2⋮5x^ny^n\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\left\{{}\begin{matrix}n\le4\\n\le3\end{matrix}\right.\\\left\{{}\begin{matrix}n\le3\\n\le3\end{matrix}\right.\\\left\{{}\begin{matrix}n\le2\\n\le2\end{matrix}\right.\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}n\le3\\n\le3\\n\le2\end{matrix}\right.\Rightarrow n\le2}\)

Chuột yêu Gạo
Xem chi tiết
Đan Anh
20 tháng 10 2018 lúc 21:29

- \(A⋮B\Leftrightarrow\left[{}\begin{matrix}5x^3⋮3x^n\\-7x^2⋮3x^n\\x⋮3x^n\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n\le3\\n\le2\\n\le1\end{matrix}\right.\Leftrightarrow}\left[{}\begin{matrix}n=0;1;2;3\\n=0;1;2\\n=0;1\end{matrix}\right.\Leftrightarrow n=0;1\)

-\(A⋮B\Leftrightarrow\left[{}\begin{matrix}13x^4y^3⋮5x^ny^n\\-5x^3y^3⋮5x^ny^n\\6x^2y^2⋮5x^ny^n\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n\le4;n\le3\\n\le3\\n\le2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=0;1;2;3\\n=0;1;2;3\\n=0;1;2\end{matrix}\right.\Leftrightarrow n=0;1;2\)

Kha Nguyễn
19 tháng 10 2018 lúc 7:48

t

Đan Anh
20 tháng 10 2018 lúc 21:33

- \(A⋮B\Leftrightarrow\left[{}\begin{matrix}5x^3⋮3x^n\\-7x^2⋮3x^n\\x⋮3x^n\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n\le3\\n\le2\\n\le1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}n=0;1;2;3\\n=0;1;2\\n=0;1\end{matrix}\right.\Leftrightarrow n=0;1\)

Đoàn Như Quỳnhh
Xem chi tiết
Trần Quốc Lộc
25 tháng 10 2017 lúc 17:25

Chia đa thức cho đơn thức

Phạm Tâm
Xem chi tiết
Hoàng Ánh Dương
Xem chi tiết