tìm GTLN
B = -(/2x+1/ + \(\frac{1}{5}\) )
Tìm GTNN hoặc GTLN
B=|2x+1|+|2x3|
C=3căn bậc 2 của 2x-1+3/4
Tìm x ϵ N để P=\(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)
a) Đạt GTLN
b) Đạt GTNN
a: \(P=\dfrac{\sqrt{x}-3+5}{\sqrt{x}-3}=1+\dfrac{5}{\sqrt{x}-3}\)
căn x-3>=-3
=>5/căn x-3<=-5/3
=>P<=-5/3+1=-2/3
Dấu = xảy ra khi x=0
Tìm x \(\frac{7^{x+2}+7^{x+1}+7^x}{57}=\frac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}\)
\(\frac{7^x\left(7^2+7+1\right)}{57}=\frac{5^{2x}\left(1+5+5^3\right)}{131}\)
\(\frac{7^x.57}{57}=\frac{5^{2x}.131}{131}\)
\(7^x=5^{2x}\)khi và chỉ khi x = 0.
tìm x biết : \(\frac{7^{x+2}+7^{x+1}+7^x}{57}=\frac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}\)
\(\frac{7^{x+2}+7^{x+1}+7^x}{57}=\frac{7^x.7^2+7^x.7+7^x}{57}=\frac{7^x.\left(7^2+7+1\right)}{57}=7^x\)
\(\frac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}=\frac{5^{2x}+5^{2x}.5+5^{2x}.5^3}{131}=\frac{5^{2x}\left(1+5+5^3\right)}{131}=\frac{25^x.131}{131}=25^x\)
\(\Rightarrow7^x=25^x\Rightarrow x=0\)
ai tích mình mình tích lại cho
Tìm x :
\(\frac{7^{x+2}+7^{x+1}+7^x}{57}=\frac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}\)
\(\frac{7^{x+2}+7^{x+1}+7^x}{57}=\frac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}\)
\(\Rightarrow\frac{7^x.7^2+7^x.7^1+7^x}{57}=\frac{5^{2x}+5^{2x}.5+5^{2x}.5^3}{131}\)
\(\Rightarrow\frac{7^x.\left(7^2+7+1\right)}{57}=\frac{5^{2x}.\left(1+5+5^3\right)}{131}\)
\(\Rightarrow\frac{7^x.57}{57}=\frac{5^{2x}.131}{131}\)
\(\Rightarrow7^x=5^{2x}\)
Bạn tự làm phần còn lại nhé
Tìm x
\(\frac{7^{x+2}+7^{x+1}+7^x}{57}=\frac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}\)
Biến đổi vế trái, ta được : \(\frac{7^{x+2}+7^{x+1}+7^x}{57}=\frac{7^x.7^2+7^x.7+7^x}{57}=\frac{7^x\left(7^2+7+1\right)}{57}=\frac{7^x.57}{57}=7^x\)\(=7^x\)
Biến đổi vế phải, ta được : \(\frac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}=\frac{5^{2x}+5^{2x}.5+5^{2x}.5^3}{131}=\frac{5^{2x}.\left(1+5+5^3\right)}{131}=\frac{5^{2x}.131}{131}=5^{2x}=25^x\)
\(\Rightarrow7^x=25^x\)
Vì \(\left(7,25\right)=1\)
\(\Rightarrow7^x=25^x=1\)
\(\Rightarrow x=0\)
Vậy \(x=0\)
Tìm x biết
f) \(\frac{2x-1}{21}\)=\(\frac{3}{2x+1}\)
g)\(\frac{2x-1}{21}=\frac{3}{2x+1}\)
h) \(\frac{10x+5}{6}=\frac{5}{x+1}\)
f) \(\frac{2x-1}{21}=\frac{3}{2x+1}\)( ĐKXĐ : \(x\ne-\frac{1}{2}\))
\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)=21\cdot3\)
\(\Leftrightarrow4x^2-1=63\)
\(\Leftrightarrow4x^2=64\)
\(\Leftrightarrow x^2=16\)
\(\Leftrightarrow x^2=\left(\pm4\right)^2\)
\(\Leftrightarrow x=\pm4\)(tmđk)
h) \(\frac{10x+5}{6}=\frac{5}{x+1}\)( ĐKXĐ : \(x\ne-1\))
\(\Leftrightarrow\left(10x+5\right)\left(x+1\right)=6\cdot5\)
\(\Leftrightarrow10x^2+15x+5=30\)
\(\Leftrightarrow10x^2+15x+5-30=0\)
\(\Leftrightarrow10x^2+15x-25=0\)
\(\Leftrightarrow5\left(2x^2+3x-5\right)=0\)
\(\Leftrightarrow2x^2+3x-5=0\)
\(\Leftrightarrow2x^2-2x+5x-5=0\)
\(\Leftrightarrow2x\left(x-1\right)+5\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+5\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\2x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)(tmđk)
f) \(\frac{2x-1}{21}=\frac{3}{2x+1}\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)=21.3\)
\(\Leftrightarrow4x^2-1=63\)
\(\Leftrightarrow4x^2=64\)
\(\Leftrightarrow x^2=16\)\(\Leftrightarrow x^2=4^2\)\(\Leftrightarrow x=4\)
Vậy \(x=4\)
h) \(\frac{10x+5}{6}=\frac{5}{x+1}\)
\(\Leftrightarrow\left(10x+5\right)\left(x+1\right)=5.6\)
\(\Leftrightarrow5\left(2x+1\right)\left(x+1\right)=30\)
\(\Leftrightarrow\left(2x+1\right)\left(x+1\right)=6\)
\(\Leftrightarrow2x^2+3x+1=6\)
\(\Leftrightarrow2x^2+3x-5=0\)
\(\Leftrightarrow\left(2x^2-2x\right)+\left(5x-5\right)=0\)
\(\Leftrightarrow2x\left(x-1\right)+5\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\2x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\2x=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{-5}{2}\end{cases}}\)
Vậy \(x\in\left\{\frac{-5}{2};1\right\}\)
\(\frac{2x-1}{21}=\frac{3}{2x+1}\)
=> (2x - 1)(2x + 1) = 63 (1)
Đặt 2x = t
Khi đó (1) <=> (t - 1)(t + 1) = 63
=> t2 + t - t - 1 = 63
=> t2 - 1 = 63
=> t2 = 64
=> t = \(\pm\)8
Khi t = 8
=> 2x = 8
=> x = 4
Khi t = -8
=> 2x = -8
=> x = -4
Vậy \(x\in\left\{4;-4\right\}\)
h) \(\frac{10x+5}{6}=\frac{5}{x+1}\)
=> (10x + 5)(x + 1) = 6.5
=> 5(2x + 1)(x + 1) = 30
=> (2x + 1)(x + 1) = 6
=> 2x2 + 2x + x + 1 = 6
=> 2x2 + 3x + 1 = 6
=>2x2 + 3x - 5 = 0
=> 2x2 - 2x + 5x - 5 = 0
=> 2x(x - 1) + 5(x - 1) = 0
=> (2x + 5)(x - 1) = 0
=> \(\orbr{\begin{cases}2x+5=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2,5\\x=1\end{cases}}\)
Vậy \(x\in\left\{-2,5;1\right\}\)
Tìm x biết:
\(\frac{3}{1+2x}=\frac{\frac{-3}{5}}{1-2x}\)
\(\Leftrightarrow15\left(1-2x\right)=-3\left(1+2x\right)\)
\(\Leftrightarrow-3-6x=15-30x\)
\(\Leftrightarrow18=24x\)
\(\Leftrightarrow x=\frac{3}{4}\)
Bài 1: Tìm các số x; y; z biết rằng \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)và 2x + 3y - z = 124.
Bài 2: Tìm các số x; y; z biết rằng \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
Tìm x,y biết : \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)1
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+3y+1-2}{5+7}=\frac{2x+3y-1}{12}\)
\(\Rightarrow\frac{2x+3y-1}{12}=\frac{2x+3y-1}{6x}\)
TH 1 : \(2x+3y-1=0\)
\(\Rightarrow\frac{2x+1}{5}=0;\frac{3y-2}{7}=0\)
\(\Rightarrow2x+1=0;3y-2=0\)
\(\Rightarrow2x=-1;3y=2\)
\(\Rightarrow x=-\frac{1}{2};y=\frac{2}{3}\)
TH 2 : \(2x+3y-1\ne0\)
\(\Rightarrow6x=12\)
\(\Rightarrow x=2\)
Mà \(\frac{2x+1}{5}=\frac{3y-2}{7}\)
\(\Rightarrow\frac{2.2+1}{5}=\frac{3y-2}{7}\)
\(\Rightarrow1=\frac{3y-2}{7}\)
\(\Rightarrow3y-2=7\)
\(\Rightarrow3y=9\)
\(\Rightarrow y=3\)
Vậy \(\orbr{\begin{cases}x=-\frac{1}{2};y=\frac{2}{3}\\x=2;y=3\end{cases}}\)
Theo t/c dãy tỉ số bằng nhau :
\(\Rightarrow\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)
Do \(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)
\(\Rightarrow6x=12\Leftrightarrow x=2\)
Xét :\(\frac{2x+1}{5}=\frac{3y-2}{7}\)
\(1=\frac{3y-2}{7}\)
\(\Rightarrow3y=9\Leftrightarrow y=3\)
ta có: \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)
\(\Rightarrow\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)
=> 6x = 12
x = 2
=> \(\frac{2x+1}{5}=\frac{2.2+1}{5}=\frac{5}{5}=1\)
\(\frac{3y-2}{7}=1\Rightarrow3y-2=7\Rightarrow3y=9\Rightarrow y=3\)
KL: x = 2; y = 3