Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Văn Công
Xem chi tiết
trang
Xem chi tiết
Nguyễn Hoàng Minh
12 tháng 10 2021 lúc 15:39

\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)

Trịnh Đình Thi
28 tháng 11 2021 lúc 10:48
Lol .ngudoots
Khách vãng lai đã xóa
ran mori
Xem chi tiết
Vy trần
Xem chi tiết
Lấp La Lấp Lánh
10 tháng 10 2021 lúc 18:12

a) \(=x^3\left(x-1\right)-\left(x-1\right)=\left(x-1\right)\left(x^3-1\right)\)

\(=\left(x-1\right)^2\left(x^2+x+1\right)\)

b) \(=xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\)

c) Đổi đề: \(a^2x+a^2y-7x-7y\)

\(=a^2\left(x+y\right)-7\left(x+y\right)=\left(x+y\right)\left(a^2-7\right)\)

d) \(=x^2\left(a-b\right)+y\left(a-b\right)=\left(a-b\right)\left(x^2+y\right)\)

e) \(=x^3\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^3+1\right)\)

\(=\left(x+1\right)^2\left(x^2-x+1\right)\)

g) \(=\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(x-y-z\right)\)

h) \(=\left(x-y\right)\left(x+y\right)+\left(x+y\right)=\left(x+y\right)\left(x-y+1\right)\)

i) \(=\left(x+1\right)^2-4=\left(x+1-2\right)\left(x+1+2\right)=\left(x-1\right)\left(x+3\right)\)

Hoàng Anh Thắng
10 tháng 10 2021 lúc 18:14

a\(x^3\left(x-1\right)-\left(x-1\right)=\left(x-1\right)\left(x^3-1\right)\)

b)\(=xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\)

d)\(=a\left(x^2+y\right)-b\left(x^2+y\right)=\left(x^2+y\right)\left(x-b\right)\)

e)\(=x^3\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^3+1\right)\)

g)\(=\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(x-y-z\right)\)

h)\(=\left(x-y\right)\left(x+y\right)-\left(x-y\right)=\left(x-y\right)\left(x+y-1\right)\)

i)\(=\left(x-1\right)^2-4=\left(x-1-2\right)\left(x-1+2\right)=\left(x-3\right)\left(x+1\right)\)

Nguyên Hoàng
Xem chi tiết
Edogawa Conan
31 tháng 7 2021 lúc 9:49

a) x4+2x2+1=(x2+1)2

b)=3x2(a+b)+x(a+b)+5(a+b)=(a+b)(3x2+x+5)

c)=x2(a-b)-2x(a-b)-3(a-b)=(a-b)(x2-2x-3)=(a-b)(x-3)(x+1)

d)=2x(y2-a2)-5by(y+a)=(y+a)(2xy-2xa-5by)

ILoveMath
31 tháng 7 2021 lúc 9:41

\(\text{a) x}^4+2x^2+1=\left(x^2+1\right)^2\)

\(\text{b) 3}ax^2+3bx^2+ãx+bx+5a+5b=\left(3ax^2+3bx^2\right) +\left(ax+bx\right)+\left(5a+5b\right)=3x^2+x\left(a+b\right)+5\left(a+b\right)=\left(a+b\right)\left(3x^2+x+5\right)\)

\(\text{c) a}x^2-bx^2-2ax+2bx-3a+3b=\left(\text{a}x^2-bx^2\right)-\left(2ax-2bx\right)-\left(3a-3b\right)=x^2\left(a-b\right)-2x\left(a-b\right)-3\left(a-b\right)=\left(x^2-2x-3\right)\left(a-b\right)\)

 

Nhan Thanh
31 tháng 7 2021 lúc 10:18

a) \(x^4+2x^2+1\)

\(=x^2\left(x^2+1\right)+\left(x^2+1\right)\)

\(=\left(x^2+1\right)^2\)

b) \(3ax^2+3bx^2+ax+bx+5a+5b\)

\(=3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\)

\(=\left(a+b\right)\left(3x^2+x+5\right)\)

c) \(ax^2-bx^2-2ax+2bx-3a+3b\)

\(=x^2\left(a-b\right)-2x\left(a-b\right)-3\left(a-b\right)\)

\(=\left(a-b\right)\left(x^2-2x-3\right)\)

\(=\left(a-b\right)\left(x-3\right)\left(x+1\right)\)

Câu d mình chịu

 

Thi Phạm Khánh
Xem chi tiết
Ngô Chi Lan
4 tháng 10 2020 lúc 18:35

Ta có: \(2ax^3+6ax^2+6ax+18a\)

\(=2\left[\left(ax^3+3ax^2\right)+\left(3ax+9a\right)\right]\)

\(=2a\left[x^2\left(x+3\right)+3\left(x+3\right)\right]\)

\(=2a\left(x+3\right)\left(x^2+3\right)\)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
4 tháng 10 2020 lúc 18:36

2ax3 + 6ax2 + 6ax + 18a

= 2a( x3 + 3x2 + 3x + 9 )

= 2a[ ( x3 + 3x2 ) + ( 3x + 9 ) ] 

= 2a[ x2( x + 3 ) + 3( x + 3 ) ]

= 2a( x + 3 )( x2 + 3 )

Khách vãng lai đã xóa
Lê Diệu Ngọc Anh
4 tháng 10 2020 lúc 18:47

= (2ax3+6ax ) + (6ax2+18a)

= 2ax (x2+3) + 6a(x2+3)

= (x2+3)(2ax + 6a)

= 2a(x2+3)(x+3)

Khách vãng lai đã xóa
ngọc hân
Xem chi tiết
ILoveMath
13 tháng 8 2021 lúc 10:09

a) x2y+xy+x+1= (x2y+xy)+(x+1)=xy(x+10+(x+1)=(x+1)(xy+1)

b) x2-(a+b)x+ab=x2-ax-bx+ab=(x2-ax)-(bx-ab)=x(x-a)-b(x-a)=(x-a)(x-b)

c) ax2+ay-bx2-by=(ax2+ay)-(bx2+by)=a(x2+y)-b(x2+y)=(a-b)(x2+y)

d) ax-2x-a2+2a=(ax-2x)-(a2-2a)=x(a-2)-a(a-2)=(a-2)(x-a)

e) 2x2+4ax+x+2a=(2x2+4ax)+(x+2a)=2x(x+2a)+(x+2a)=(x+2a)(2x+1)

f) x3+ax2+x+a=(x3+ax2)+(x+a)=x2(x+a)+(x+a)=(x2+1)(x+a)

Nguyễn Lê Phước Thịnh
13 tháng 8 2021 lúc 12:42

g: Ta có: \(x^4+2x^3-4x-4\)

\(=\left(x^2-2\right)\left(x^2+2\right)-2x\left(x^2-2\right)\)

\(=\left(x^2-2\right)\cdot\left(x^2+2x+2\right)\)

T.Huy
Xem chi tiết
Nguyễn Hoàng Minh
28 tháng 10 2021 lúc 10:20

Bài 1:

\(1,Sửa:x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\\ 2,=6\left(x^2+2xy+y^2\right)=6\left(x+y\right)^2\\ 3,=2y\left(y^2+4y+4\right)=2y\left(y+2\right)^2\\ 4,=5\left(x^2-2xy+y^2\right)=5\left(x-y\right)^2\)

Bài 2:

\(1,=x\left(x^2-64\right)=x\left(x-8\right)\left(x+8\right)\\ 2,=2y\left(4x^2-9\right)=2y\left(2x-3\right)\left(2x+3\right)\\ 3,=3\left(x^3-1\right)=3\left(x-1\right)\left(x^2+x+1\right)\)

Bài 3:

\(a,=5\left(x^2+2x+1-y^2\right)=5\left[\left(x+1\right)^2-y^2\right]=5\left(x-y+1\right)\left(x+y+1\right)\\ b,=3x\left(x^2-2x+1-4y^2\right)=3x\left[\left(x-1\right)^2-4y^2\right]\\ =3x\left(x-2y-1\right)\left(x+2y-1\right)\\ c,=ab\left(a-b\right)\left(a+b\right)+\left(a+b\right)^2\\ =\left(a+b\right)\left(a^2b-ab^2+a+b\right)\\ d,=2x\left(x^2-y^2-4x+4\right)=2x\left[\left(x-2\right)^2-y^2\right]\\ =2x\left(x-y-2\right)\left(x+y-2\right)\)

nguyễn thị hương giang
28 tháng 10 2021 lúc 10:20

undefined

ILoveMath
28 tháng 10 2021 lúc 10:21

Bài 1;

1) \(x^3-2x-x=x\left(x^2-2x-1\right)\)

2) \(6x^2+12xy+6y^2=6\left(x^2+2xy+y^2\right)=6\left(x+y\right)^2\)

3) \(2y^3+8y^3+8y=10y^3+8y=2y\left(5y^2+4\right)\)

4) \(5x^2-10xy+5y^2=5\left(x^2-2xy+y^2\right)=5\left(x-y\right)^2\)

Bài 2:

1) \(x^3-64x=x\left(x^2-64\right)=x\left(x-8\right)\left(x+8\right)\)

2) \(8x^2y-18y=2y\left(4x^2-9\right)=2y\left(2x-3\right)\left(2x+3\right)\)

3) \(24x^3-3=3\left(8x^3-1\right)=3\left(2x-1\right)\left(4x^2+2x+1\right)\)

Bài 3:

1) \(5x^2+10x+5-5y^2=5\left(x^2+2x+1-y^2\right)=5\left[\left(x+1\right)^2-y\right]=5\left(x-y+1\right)\left(x+y+1\right)\)

2) \(3x^3-6x^2+3x-12xy^2=3x\left(x^2-2x+1-4y^2\right)=3x\left[\left(x-1\right)^2-\left(2y\right)^2\right]=3x\left(x-2y-1\right)\left(x+2y-1\right)\)

3) \(a^3b-ab^3+a^2+2ab+b^2=ab\left(a^2-b^2\right)+\left(a+b\right)^2=ab\left(a-b\right)\left(a+b\right)+\left(a+b\right)^2=\left(a+b\right)\left(a^2b-ab^2+a+b\right)\)

4) \(2x^3-2xy^2-8x^2+8xy=2x\left(x^2-y^2-4x+4y\right)=2x\left[\left(x-y\right)\left(x+y\right)-4\left(x-y\right)\right]=2x\left(x-y\right)\left(x+y-4\right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 11 2018 lúc 12:05

3x2 + 8x + 2 = 0

Có a = 3; b' = 4; c = 2

⇒ Δ’ = 42 – 2.3 = 10 > 0

⇒ Phương trình có hai nghiệm phân biệt:

Giải bài 33 trang 54 SGK Toán 9 Tập 2 | Giải toán lớp 9