Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hữu Minh Khang
Xem chi tiết
Akai Haruma
28 tháng 8 2021 lúc 16:47

Lời giải:

Đặt $\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=t$

$t^3=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}(1)$

Áp dụng tính chất dãy tỉ số bằng nhau:

$t^3=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}(2)$

Từ $(1);(2)$ ta có đpcm.

KuDo Shinichi
Xem chi tiết
Lê Chí Cường
26 tháng 1 2016 lúc 10:26

Ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

=>\(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{b}{c}.\frac{b}{c}.\frac{b}{c}=\frac{c}{d}.\frac{c}{d}.\frac{c}{d}\)

=>\(\frac{a.b.c}{b.c.d}=\frac{a.a.a}{b.b.b}=\frac{b.b.b}{c.c.c}=\frac{c.c.c}{d.d.d}\)

=>\(\frac{a}{d}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{d}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=>\(\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=>ĐPCM

lưu tuấn anh
Xem chi tiết
Akai Haruma
28 tháng 9 2018 lúc 21:12

Lời giải:

\(\frac{a}{c}=\frac{c}{b}=\frac{b}{d}\)

\(\Rightarrow \frac{a^3}{c^3}=\frac{c^3}{b^3}=\frac{b^3}{d^3}=\frac{a^3+c^3-b^3}{c^3+b^3-d^3}(1)\) (theo tính chất dãy tỉ số bằng nhau)

Mặt khác:

\(\frac{a}{c}=\frac{c}{b}=\frac{b}{d}\Rightarrow \frac{a}{c}.\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{c}{b}.\frac{b}{d}\)

Hay \(\frac{a^3}{c^3}=\frac{a}{d}(2)\)

Từ \((1);(2)\Rightarrow \frac{a^3+c^3-b^3}{c^3+b^3-d^3}=\frac{a}{d}\) (đpcm)

Nguyên Ngân Hà
Xem chi tiết
Nguyễn Việt Hoàng
4 tháng 9 2020 lúc 15:33

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

\(\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)

Vậy.............

Khách vãng lai đã xóa
ミ★Ƙαї★彡
4 tháng 9 2020 lúc 15:36

Áp dụng t/c dãy tỉ số bằng nhau 

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

Suy ra  \(\left(\frac{a}{d}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\)

Ta có ddpcm 

Khách vãng lai đã xóa
Huyen Trang
4 tháng 9 2020 lúc 15:40

Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\) \(\left(k\inℝ\right)\)

=> \(\hept{\begin{cases}a=bk\\b=ck\\c=dk\end{cases}}\Leftrightarrow\hept{\begin{cases}a=dk^3\\b=dk^2\\c=dk\end{cases}}\)

Thay vào ta được: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

\(=\frac{d^3k^9+d^3k^6+d^3k^3}{d^3k^6+d^3k^3+d^3}=\frac{d^3k^3\left(k^6+k^3+1\right)}{d^3\left(k^6+k^3+1\right)}=k^3\)

mà \(\frac{a}{d}=\frac{dk^3}{d}=k^3\)

=> \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)

Khách vãng lai đã xóa
Tuyết Băng Lan
Xem chi tiết
Vũ Minh Đức
Xem chi tiết
hải yến gaming tv
Xem chi tiết
Nguyễn Hồng Minh
Xem chi tiết
Phạm thị thảo
Xem chi tiết