cho x,y,z>-3/4 và x+y+z=1
tìm max F=\(\sqrt{4x+3}\)+\(\sqrt{4y+3}\)+\(\sqrt{4z+3}\)
giup mik dc k gap cuc Cho x,y,z∈R sao cho x,y,z>-3 và x+y+z=3 Tìm GTLN của G= \(\sqrt{ 4x + 3 +}\) \(\sqrt{4y}+3+\) \(\sqrt{4z}+3\)
Cho x,y,z>0 và x+y+z=3. Tìm Min A = \(\frac{z}{\sqrt{x^2+5xy+4y^2}}+\frac{x}{\sqrt{y^2+5yz+4z^2}}+\frac{y}{\sqrt{z^2+5zx+4x^2}}\)
Cho 0<x,y,z<\(\dfrac{\sqrt{3}}{2}\) thỏa mãn xy+yz+zx=\(\dfrac{3}{4}\)
Tìm Min \(Q=\dfrac{4x^2}{x\left(3-4x^2\right)}+\dfrac{4y^2}{y\left(3-4y^2\right)}+\dfrac{4z^2}{z\left(3-4z^2\right)}\)
Ta chứng minh BĐT sau:
Ta có: \(x\left(3-4x^2\right)=-4x^3+3x-1+1=1-\left(x+1\right)\left(2x-1\right)^2\le1\)
\(\Rightarrow\dfrac{4x^2}{x\left(3-4x^2\right)}\ge\dfrac{4x^2}{1}=4x^2\)
Tương tự và cộng lại:
\(Q\ge4\left(x^2+y^2+z^2\right)\ge4\left(xy+yz+zx\right)=3\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{2}\)
cho \(\hept{\begin{cases}x+y=\sqrt{4z-1}\\y+z=\sqrt{4x-1}\\z+x=\sqrt{4y-1}\end{cases}}\) TÍNH \(\left(4x-3\right)^{2012}+\left(4y-3\right)^{2013}+\left(4z-1\right)^{2014}\)
Điều kiện \(x,y,z\ge\frac{1}{4}\)
Cộng các phương trình trong hệ được :
\(2\left(x+y+z\right)=\sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}\)
\(\Leftrightarrow4\left(x+y+z\right)=2\sqrt{4x-1}+2\sqrt{4y-1}+2\sqrt{4z-1}\)
\(\Leftrightarrow\left(\sqrt{4x-1}-1\right)^2+\left(\sqrt{4y-1}-1\right)^2+\left(\sqrt{4z-1}-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{4x-1}-1=0\\\sqrt{4y-1}-1=0\\\sqrt{4z-1}-1=0\end{cases}}\) \(\Leftrightarrow x=y=z=\frac{1}{2}\)
Từ đó thay vào yêu cầu đề bài để tính.
Cho 0<x,y,z<\(\dfrac{\sqrt{3}}{2}\) thỏa mãn xy+yz+zx=\(\dfrac{3}{4}\)
Tìm Min Q=\(\dfrac{4x^2}{x\left(32-4x^2\right)}+\dfrac{4y^2}{y\left(32-4y^2\right)}+\dfrac{4z^2}{z\left(32-4z^2\right)}\)
Cho x+y+z=1 và x,y,z >= -1/4 CMR : \(\sqrt{4x+1}+\sqrt{4y+1}+\sqrt{4z+1}\le\sqrt{21}\)
\(\left(\sqrt{4x+1}+\sqrt{4y+1}+\sqrt{4z+1}\right)^2\le\left(1^2+1^2+1^2\right)\left(4x+1+4y+1+4z+1\right)=21.\)
\(\Leftrightarrow\sqrt{4x+1}+\sqrt{4y+1}+\sqrt{4z+1}\le\sqrt{21}\left(đpcm\right)\)
Dấu "=" xra :
\(\frac{4x+1}{1}=\frac{4y+1}{1}=\frac{4z+1}{1}\Rightarrow x=y=z=\frac{1}{3}\)
Giải phương trình :
\(a,13x-2\sqrt{x}.\left(3+2y\right)+y^2+1=0\)
\(b,x+4\sqrt{x+3}+2\sqrt{3-2x}=11\)
\(c,x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)
\(d,2x+2y+2z=\sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}\)
Giải phương trình :
a,\(13x-2\sqrt{x}.\left(3+2y\right)+y^2+1=0\)
b,\(x+4\sqrt{x+3}+2\sqrt{3-2x}=11\)
c,\(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)
d,\(2x+2y+2z=\sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}\)
b,ĐK:\(-3\le x\le\frac{3}{2}\)
\(PT\Leftrightarrow x-1+4\left(\sqrt{x+3}-2\right)+2\left(\sqrt{3-2x}-1\right)=0\)
\(\Leftrightarrow x-1+\frac{4\left(x-1\right)}{\sqrt{x+3}+2}+\frac{2\left(2-2x\right)}{\sqrt{3-2x}+1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(1+\frac{4}{\sqrt{x+3}+2}-\frac{4}{\sqrt{3-2x}+1}\right)=0\)
Với \(x\ge-3\) \(\Rightarrow\frac{4}{\sqrt{x+3}+2}>0\) và \(3-2x\le9\Rightarrow-\frac{4}{\sqrt{3-2x}+1}\ge-1\)
\(\Rightarrow1+\frac{4}{\sqrt{x+3}+2}-\frac{4}{\sqrt{3-2x}+1}>0\)
\(\Rightarrow x-1=0\Rightarrow x=1\)(tm)
c,Đk: \(x\ge2,y\ge3,z\ge5\)
pt <=> \(x-2\sqrt{x-2}+y-4\sqrt{y-3}+z-6\sqrt{z-5}+4=0\)
<=> \(\left(x-2\right)-2\sqrt{x-2}+1+\left(y-3\right)-4\sqrt{y-3}+4+\left(z-5\right)-6\sqrt{z-5}+9=0\)
<=>\(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=\)0
=>\(\left\{{}\begin{matrix}\sqrt{x-2}-1=0\\\sqrt{y-3}-2=0\\\sqrt{z-5}-3=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=3\\y=7\\z=14\end{matrix}\right.\)(t/m)
d, \(2x+2y+2z=\sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}\left(đk:x,y,z\ge\frac{1}{4}\right)\)
<=> \(4x+4y+4z=2\sqrt{4x-1}+2\sqrt{4y-1}+2\sqrt{4z-1}\)
<=> \(\left(4x-1\right)-2\sqrt{4x-1}+1+\left(4y-1\right)-2\sqrt{4y-1}+1+\left(4z-1\right)-2\sqrt{4z-1}+1=0\)
<=>\(\left(\sqrt{4x-1}-1\right)^2+\left(\sqrt{4y-1}-1\right)^2+\left(\sqrt{4z-1}-1\right)^2=0\)
=>\(\left\{{}\begin{matrix}\sqrt{4x-1}-1=0\\\sqrt{4y-1}-1=0\\\sqrt{4z-1}-1=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{2}\\z=\frac{1}{2}\end{matrix}\right.\)(tm)
Cho các số x,y,z >0 thỏa mãn x+y+z = 12. Tìm GTLN của biểu thức: \(A=\sqrt{4x+2\sqrt{x}+1}+\sqrt{4y+2\sqrt{y}+1}+\sqrt{4z+2\sqrt{z}+1}\)
\(\sqrt{4x+2\sqrt{x}+1}\le\sqrt{4x+\dfrac{1}{2}\left(2^2+x\right)+1}=\sqrt{\dfrac{9x}{2}+3}\)
\(=\dfrac{1}{\sqrt{21}}.\sqrt{21}.\sqrt{\dfrac{9x}{2}+3}\le\dfrac{1}{2\sqrt{21}}\left(21+\dfrac{9x}{2}+3\right)=\dfrac{1}{2\sqrt{21}}\left(\dfrac{9x}{2}+24\right)\)
Tương tự và cộng lại:
\(A\le\dfrac{1}{2\sqrt{21}}\left(\dfrac{9}{2}\left(x+y+z\right)+72\right)=3\sqrt{21}\)
\(A_{max}=3\sqrt{21}\) khi \(x=y=z=4\)
\(A=1\sqrt{4x+2\sqrt{x}+1}+1.\sqrt{4y+2\sqrt{y}+1}+1\sqrt{4z+2\sqrt{z}+1}\)
\(\le\sqrt{\left(1+1+1\right)\left(4\left(x+y+z\right)+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+3\right)}\)
\(=\sqrt{3.\left[51+\dfrac{4\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}{2}\right]}\)
\(\le\sqrt{3.\left[51+\dfrac{x+y+z+12}{2}\right]}\)
\(=\sqrt{189}\)
Dấu "=" xảy ra <=> x = y = z = 4