Trong hệ tọa độ Oxy, cho hình thoi ABCD có đỉnh D(1;-5), trung điểm cạnh AB, AC lần lượt là M(2;-3) và N(3;-4). Tìm tọa độ các đỉnh còn lại của hình thoi.
Trong mặt phẳng với hệ tọa độ Oxy, cho hình thoi ABCD có tâm I(2;1) và AC=2BD.Điểm M 0 ; 1 3 thuộc đường thẳng AB, điểm N(0;7) thuộc đường thẳng CD. Tìm tọa độ đỉnh B biết B có hoành độ dương
A.(4;2)
B.(1;-1)
C. ( 1 ; 3 5 )
D. ( 2 ; - 7 3 )
Trong mặt phẳng tọa độ Oxy. Cho hình thoi ABCD cạnh a và B A D ^ = 60 ° . Biết A trùng với gốc tọa độ O; C thuộc trục Ox và xB; yB ≥ 0. Tìm tọa độ các đỉnh B và C của hình thoi ABCD.
A.
B.
C.
D.
trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có đỉnh A(-1,2) và tâm I(1/2:0) xác định tọa độ các đỉnh còn lại của hình chữ nhật ABCD, biết đường thẳng BC đi qua điểm m(4;-3)
I là trung điểm AC \(\Rightarrow C\left(2;-2\right)\)
\(\Rightarrow\overrightarrow{CM}=\left(2;-1\right)\Rightarrow\) đường thẳng BC có dạng:
\(1\left(x-2\right)+2\left(y+2\right)=0\Leftrightarrow x+2y+2=0\)
Đường thẳng AB qua A và vuông góc BC nên nhận \(\left(2;-1\right)\) là 1 vtpt
Phương trình AB:
\(2\left(x+1\right)-1\left(y-2\right)=0\Leftrightarrow2x-y+4=0\)
B là giao điểm AB và BC nên tọa độ là nghiệm:
\(\left\{{}\begin{matrix}x+2y+2=0\\2x-y+4=0\end{matrix}\right.\) \(\Rightarrow B\left(...\right)\)
I là trung điểm BD \(\Rightarrow\left\{{}\begin{matrix}x_D=2x_I-x_B=...\\y_D=2y_I-y_B=...\end{matrix}\right.\)
trong mặt phẳng với hệ tọa độ Oxy, cho hình thang cân ABCD ( AB//CD) . biết tọa độ các điểm A(-8;2) B(-4;6)D(-6-8) xác định tọa độ đỉnh C
\(\overrightarrow{AB}=\left(-4;4\right)=-4\left(1;-1\right)\)
\(\Rightarrow\) Phương trình CD song song AB đi qua D có dạng:
\(1\left(x+6\right)+1\left(y+8\right)=0\Leftrightarrow x+y+14=0\)
Gọi M là trung điểm AB \(\Rightarrow M\left(-6;4\right)\)
Phương trình đường thẳng d qua M và vuông góc AB có dạng:
\(1\left(x+6\right)-1\left(y-4\right)=0\Leftrightarrow x-y+10=0\)
Gọi N là giao điểm CD và d \(\Rightarrow\) N là trung điểm CD do ABCD là hình thang cân
Tọa độ N là nghiệm: \(\left\{{}\begin{matrix}x+y+14=0\\x-y+10=0\end{matrix}\right.\) \(\Rightarrow N\left(-12;-2\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x_C=2x_N-x_D=...\\y_C=2y_N-y_D=...\end{matrix}\right.\)
Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có AB :2x -y + 1 = 0, AC : x -y + 1 = 0 và M là trung điểm của CD thuộc đường thẳng 2x + y + 1 = 0 . Tìm tọa độ các đỉnh A, B, C, D
1.Trong mặt phẳng tọa độ Oxy cho hình bình hành ABCD với A (- 6;1); B (2;2) C (1;5) tọa độ đỉnh D là:
A. (5;2)
B. (-7;4)
C. (5;4)
D. (7;-4)
2.Trong mặt phẳng tọa độ Oxy cho tam giác ABC với A (- 1;3); B (2;1) C (5;5) tọa độ đỉnh D là của hình bình hành ABCD:
A. (0;4)
B. (8;1)
C. (8;3)
D. (-8;3)
Hướng dẫn em cách làm với ạ. Em cảm ơn nhiều.
1, Gọi tọa độ điểm D(x;y)
Ta có:\(\overrightarrow{AB}\left(8;1\right)\)
\(\overrightarrow{DC}\left(1-x;5-y\right)\)
Tứ giác ABCD là hình bình hành khi
\(\overrightarrow{AB}=\overrightarrow{DC}\)
\(\Leftrightarrow1-x=8;5-y=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-7\\y=4\end{matrix}\right.\)
Vậy tọa độ điểm D(-7;4)
Trong không gian Oxyz, cho hình thoi ABCD với điểm A - 1 ; 2 ; 1 , B 2 ; 3 ; 2 . Tâm I của hình thoi thuộc đường thẳng d : x + 1 - 1 = y - 1 = z - 2 1 . Biết D có tọa độ âm, vậy tọa độ của đỉnh D là:
A. D - 2 ; - 1 ; 0
B. D 0 ; 1 ; 2
C. D 0 ; - 1 ; - 2
D. D 2 ; 1 ; 0
Trong mặt phẳng với hệ tọa độ Oxy , cho hình chữ nhật ABCD , đường thẳng BC có phương trình x+y-4=0, điểm M(-1,-1) là trung điểm của đoạn AD . Xác định tọa độ các đỉnh hình chữ nhật ABCD , biết đường thẳng AB đi qua điểm e(-1,1)
AB đi qua E và vuông góc BC nên nhận (1;-1) là 1 vtpt
Phương trình AB:
\(1\left(x+1\right)-1\left(y-1\right)=0\Leftrightarrow x-y+2=0\)
Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}x-y+2=0\\x+y+4=0\end{matrix}\right.\) \(\Rightarrow B\left(-3;-1\right)\)
Đường thẳng d qua M và song song AB có pt:
\(1\left(x+1\right)-1\left(y+1\right)=0\Leftrightarrow x-y=0\)
Gọi N là giao điểm d và BC \(\Rightarrow N\) là trung điểm BC
Tọa độ N là nghiệm: \(\left\{{}\begin{matrix}x-y=0\\x+y-4=0\end{matrix}\right.\) \(\Rightarrow N\left(2;2\right)\Rightarrow C\left(7;5\right)\)
Đường thẳng AD qua M và song song BC có pt:
\(1\left(x+1\right)+1\left(y+1\right)=0\Leftrightarrow x+y+2=0\)
A là giao điểm AB và AD nên tọa độ là nghiệm: \(\left\{{}\begin{matrix}x-y+2=0\\x+y+2=0\end{matrix}\right.\) \(\Rightarrow A\left(-2;0\right)\)
\(\overrightarrow{AB}=\overrightarrow{DC}\Rightarrow\) tọa độ D
Trong hệ tọa độ Oxy, cho hình chữ nhật ABCD có A(0; 3); D(2; 1) và I(-1 ; 0) là tâm của hình chữ nhật. Tìm tọa độ tung điểm của cạnh BC
A. (1 ; 2)
B. (-2; -3)
C. (-3 ; -2)
D. (- 4 ; -1)
Gọi M là tọa độ trung điểm của cạnh AD => M (1 ; 2)
Gọi N ( x N ; y N ) là tọa độ trung điểm của cạnh BC
Do I là tâm của hình chữ nhật nên I là trung điểm của MN.
Suy ra
x N = 2 x I − x M = − 3 y N = 2 y I − y M = − 2 ⇒ N − 3 ; − 2 .
Đáp án C