Tìm x,y thỏa mãn
2x^2+5x=12Tìm
Tìm x / y , biết x,y thỏa mãn
2x-y/x+y=2/3
thank các bạn giúp đc mình câu này❤❤
Đề thế này hả e
\(\dfrac{2x-y}{x+y}=\dfrac{2}{3}\)
\(\Leftrightarrow3\left(2x-y\right)=2\left(x+y\right)\)
\(\Leftrightarrow6x-3y=2x+y\)
\(\Leftrightarrow4x=4y\)
\(\Leftrightarrow x=y\)
Vậy.....
\(\dfrac{2x-y}{x+y}=\dfrac{2}{3}\Leftrightarrow3\left(2x-y\right)=2\left(x+y\right)\)
\(\Leftrightarrow6x-3y=2x+2y\)
\(\Leftrightarrow4x=5y\)
\(\Leftrightarrow\dfrac{x}{y}=\dfrac{5}{4}\)
Vậy....
a làm lại nhé, nãy sai
Tìm x,y thỏa mãn
2x^2+5x=12Tìm
Ai giải đúng và nhanh nhất sẽ được 3 tick
\(2x^2+5x=12\)
\(\Leftrightarrow2x^2+5x-12=0\)
\(\Leftrightarrow2x^2+8x-3x-12=0\) .
\(\Leftrightarrow2x\left(x+4\right)-3\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+4=0\\2x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-4\\x=\frac{3}{2}\end{cases}}\)
5x=8y và -x+2y=-12
Tìm x,y
=>5x-8y=0 và x-2y=12
=>5x-8y=0 và 5x-10y=60
=>2y=-60 và 5x=8y
=>y=-30 và 5x=-240
=>x=-48; y=-30
3x2+5x=12
tìm x
\(\Leftrightarrow3x^2+5x-12=0\)
=>(x+3)(3x-4)=0
=>x=-3 hoặc x=4/3
3x2+5x=12
3x2+5x-12=0
3x2-4x+9x-12=0
x(3x-4)+3(3x-4)=0
(x+3)(3x-4)=0
\(\Rightarrow\)x+3=0 hoặc 3x-4=0
\(\Rightarrow\)x=-3 hoặc x=\(\dfrac{4}{3}\)
a M(x)=4x^3-7x^2+x-12
N(x)= -4x^3+5x^2-9x+12
tìm nghiệm của 2 đa thức trên
Bài 1.
a) Tìm x, y nguyên thỏa mãn: (x + y + 1) ^ 3 = 7 + x ^ 3 + y ^ 3
b) Tìm x, y nguyên dương thỏa mãn: y ^ 2 + 2xy - 8x ^ 2 - 5x = 2
a) \(\left(x+y+1\right)^3=x^3+y^3+7\)
\(\Leftrightarrow\left(x+y\right)^3+3\left(x+y\right)\left(x+y+1\right)+1=x^3+y^3+7\)
\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)+3\left(x+y\right)\left(x+y+1\right)+1=x^3+y^3+7\)
\(\Leftrightarrow3\left(x+y\right)\left(x+y+xy+1\right)=6\)
\(\Leftrightarrow\left(x+y\right)\left[x\left(1+y\right)+1+y\right]=2\)
\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\left(x+y\right)=2\)
\(\Rightarrow x+1,y+1,x+y\) là các ước của 2.
Ta thấy 6 có 2 dạng phân tích thành tích 3 số nguyên là \(\left(2;1;1\right)\) và\(\left(2;-1;-1\right)\).
- Xét trường hợp \(\left(2;1;1\right)\). Ta có 3 trường hợp nhỏ:
\(\left\{{}\begin{matrix}x+1=2\\y+1=1\\x+y=1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=1\\y+1=2\\x+y=1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=1\\y+1=1\\x+y=2\end{matrix}\right.\)
Giải ra ta có \(\left(x,y\right)=\left(1;0\right),\left(0;1\right)\).
- Xét trường hợp \(\left(2;-1;-1\right)\). Ta có 3 trường hợp nhỏ:
\(\left\{{}\begin{matrix}x+1=2\\y+1=-1\\x+y=-1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=-1\\y+1=2\\x+y=-1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=-1\\y+1=1\\x+y=2\end{matrix}\right.\).
Giải ra ta có: \(\left(x;y\right)=\left(1;-2\right),\left(-2;1\right)\).
Vậy \(\left(x;y\right)=\left(0;1\right),\left(1;0\right),\left(1;-2\right),\left(-2;1\right)\)
b) \(y^2+2xy-8x^2-5x=2\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)-\left(9x^2+5x\right)=2\)
\(\Leftrightarrow\left(x+y\right)^2-9\left(x^2+\dfrac{5}{9}x+\dfrac{25}{324}\right)+\dfrac{25}{36}=2\)
\(\Leftrightarrow\left(x+y\right)^2-9\left(x+\dfrac{5}{18}\right)^2=\dfrac{47}{36}\)
\(\Leftrightarrow6^2.\left(x+y\right)^2-3^2.6^2\left(x+\dfrac{5}{18}\right)^2=47\)
\(\Leftrightarrow\left(6x+6y\right)^2-\left(18x+5\right)^2=47\)
\(\Leftrightarrow\left(6x+6y-18x-5\right)\left(6x+6y+18x+5\right)=47\)
\(\Leftrightarrow\left(6y-12x-5\right)\left(24x+6y+5\right)=47\)
\(\Rightarrow\)6y-12x-5 và 24x+6y+5 là các ước của 47.
Lập bảng:
6y-12x-5 | 1 | 47 | -1 | -47 |
24x+6y+5 | 47 | 1 | -47 | -1 |
x | 1 | \(\dfrac{-14}{9}\left(l\right)\) | \(\dfrac{-14}{9}\left(l\right)\) | 1 |
y | 3 | \(\dfrac{50}{9}\left(l\right)\) | \(-\dfrac{22}{9}\left(l\right)\) | -5 |
Vậy pt đã cho có 2 nghiệm (x;y) nguyên là (1;3) và (1;-5)
Tìm các số nguyên \(x,y\) thỏa mãn: \(x^2+y^2+5x^2y^2+60=37xy\)
tìm x,y thỏa mãn phương trình sau 5x^2 - y^2 + 4xy - y = 0