Cho a+b+d+3\(\ne\) 0 và \(\frac{a+3}{b+3}=\frac{3+d}{d+a}\)
Tìm a
Cho\(\frac{a}{b}=\frac{c}{d}\)≠1,-1,c≠0,Cm rằng
a,(\(\frac{a-b}{c-d}\))2 =\(\frac{ab}{cd}\)
b,(\(\frac{a+b}{c+d}\))3 =\(\frac{a^3-b^3}{c^3-d^3}\)
Ở ngay dưới câu hỏi của bạn có đấy. Mai Chi Lê Vũ
Cho a+b+c+d+3 khác 0; b+3 khác 0; d+a khác 0 và \(\frac{a+b}{b+3}=\frac{3+d}{d+a}\). Tìm a.
C1: Cho \(\frac{a}{b}\)= \(\frac{c}{d}\)\(\ne\)1 hoặc -1 và c\(\ne\)0. Chứng minh rằng:(\(\frac{a+b}{c+d}\))3=\(\frac{a^3-b^3}{c^3-d^3}\)
C2: Cho b2=ac; c2=bd. Với b, c, d \(\ne\)0; b+c\(\ne\)d;b3+c3\(\ne\)d3
CMR: a) \(\frac{a^3+b^3-c^3}{b^3+c^3-d^3}\)=(\(\frac{a+b-c}{b+c-d}\))3 b) \(\frac{a^2+b^2}{b^2+c^2}\)= \(\frac{a}{c}\)
Giúp mình 1 câu cũng được, ko cần làm hết, ai làm nhanh mình TICK cho.
giúp mình bài này với
so sánh bằng cách nhanh nhất
a 2013 phần 2012 và 13 phần 12
b 15 phần 46 và 21 phần 62
a) Cho a,b,c,d là 4 số khác 0 thỏa mãn b2=ac, c2=bd và b3+c3+d3\(\ne\)0
Chứng minh rằng \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
b) Cho x-y=2 Tìm giá trị nhỏ nhất của Q=x2+y2-xy
a .
\(b^2\)= ac => \(\frac{a}{b}\)=\(\frac{b}{c}\)
c\(^2\)= bd => \(\frac{b}{c}=\frac{c}{d}\)
=>\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{a^3}{b^3}=\frac{c^3}{d^3}\)=\(\frac{\left(a^3+b^3+c^3\right)}{\left(b^3+c^3+d^3\right)}\)( theo \(\frac{t}{c}\)của dãy tỉ số = )
Mà \(\frac{a^3}{b^3}\)= \(\frac{a}{b}\)x \(\frac{a}{b}\).x \(\frac{a}{b}\) = \(\frac{a}{b}\) x\(\frac{b}{c}\)x\(\frac{c}{d}\)= \(\frac{a}{d}\)
Nên \(\frac{\left(a^3+b^3+c^3\right)}{\left(b^3+c^3+d^3\right)}\)=\(\frac{a}{d}\)
x-y=2<=>x=y+2
thay vào Q được:
Q=(y+2)^2+y^2-(y+2)y
=y^2+2y+4
=(y+1)^2+3
=>A>=3
dấu bằng xảy ra <=>y= -1 và x=1
vậy min Q=3
bn dấu tên mà sao giỏi quá,đọc bài làm mà tui chợt nhớ về nguyễn trãi ức trai
xem cách bn giải mà tui thấy mk nhỏ nhoi quá
a ) Cho b2 = ac , c2 = bd . Chứng minh :
\(\frac{a^3+b^3+c^3}{b^3+c^3-d^3}=\left(\frac{a+b+c}{b+c-d}\right)^3\) với b , c , d\(\ne\) 0 , b + c \(\ne\) 0 , b3 + c3 \(\ne\) d3
b ) Cho N = \(\frac{9}{\sqrt{x}-5}\) . Tìm x \(\in\) Z để N có giá trị nguyên
b)Để N có giá trị nguyên thì căn x-5 EƯ(9)={1;-1;3;-3;9;-9}
=>căn x E{6;4;8;2;14;-4}
=>xE{36;24;64;4;196;16}
Vậy để N có giá trị nguyên thì x E{36;24;64;4;196;16}
Cho a,b,c,d\(\ne\) 0 và \(\frac{a}{b}=\frac{c}{d}\) .Chứng minh:
(\(\frac{a-b}{c-d}\))\(^3\)=\(\frac{a^3+b^3}{c^3+d^3}\)
Ta có :
\(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\left(ADTCDTSBN\right)\)
\(\Rightarrow\frac{a^3}{c^3}=\frac{b^3}{d^3}=\frac{\left(a-b\right)^3}{\left(c-d\right)^3}\)
ADTCDTSBN , ta có :
\(\frac{a^3}{c^3}=\frac{b^3}{d^3}=\frac{\left(a-b\right)^3}{\left(c-d\right)^3}=\left(\frac{a-b}{c-d}\right)^3\left(Đpcm\right)\)
~
Sửa lại dòng cuối :
\(\left(\frac{a-b}{c-d}\right)^3=\frac{a^3+b^3}{c^3+d^3}\left(đpcm\right)\)
Có \(\frac{a}{b}=\frac{c}{d}\left(a;b;c;d\ne0\right)\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}=\frac{a-b}{c-d}\)
\(\Rightarrow\left(\frac{a-b}{c-d}\right)^3=\frac{a^3-b^3}{c^3-d^3}=\frac{a^3+b^3}{c^3+d^3}\)
Vậy \(\left(\frac{a-b}{c-d}\right)^3=\frac{a^3+b^3}{c^3+d^3}\)
1) Với điều kiện nào của a và b thì ta có tỉ lệ thức \(\frac{a}{b}=\frac{a+c}{b+c}\) với c \(\ne\) 0
2) Cho các số a,b,c,d \(\ne\) 0, thỏa mãn b2 = ac; c2 = bd; b3 + c3 +d3 \(\ne\) 0
Chứng minh: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
\(Cho\)\(a\ne b\ne c\ne d\ne0\)thỏa mãn điều kiện: \(b^2=ac;c^2=bd\)và\(b^3+c^3+d^3\ne0.CMR:\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
Ta có:
\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)
\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)
Ta có : \(b^2=ac\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}\) (1)
\(c^2=bd\)
\(\Rightarrow\frac{b}{c}=\frac{c}{d}\) (2)
Từ (1) và (2) suy ra : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}\) , \(\frac{b}{c}.\frac{b}{c}.\frac{b}{c}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}\) và \(\frac{c}{d}.\frac{c}{d}.\frac{c}{d}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{a}{d}\) , \(\frac{b^3}{c^3}=\frac{a}{d}\) và \(\frac{c^3}{d^3}=\frac{a}{d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
Vậy \(\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
Ta có:
\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)
\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)
\(ADTCDTSBN,\)ta có:
\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(1\right)\)
Lại có:\(\frac{a^3}{b^3}=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(đpcm\right)\)