Chung to rang:
\(4x-x^2-5
chung to rang da thuc kho co nghiem x^2 +4x+4
Ta có: \(x^2+4x+4\)
\(x^2\ge0,\forall x\)
\(4x\ge0,\forall x\)
\(\Rightarrow x^2+4x+4\ge1>0,\forall x\)
Vậy....
P/s: Không chắc nhé!
dung dinh nghia hai phan thuc bang nhau chung to rang
a] x^2y^3/5=7x^3y^4/35xy
b] x^3-4x/10-5x= -x^2-2x/5
cho so nguyen to p va cac so duong x,y thoa man 4x^2-3xy-y^2-p(3x+2y)=2p^2 CHUNG MINH RANG 5x-1 la so chinh phuong
Có: \(4x^2-3xy-y^2-p\left(3x+2y\right)=2p^2\Leftrightarrow\left(4x+y\right)\left(x-y\right)-p\left(3x+2y\right)=2p^2\)\(\Leftrightarrow\left[\left(3x+2y\right)+\left(x-y\right)\right]\left(x-y\right)-p\left(3x+2y\right)=2p^2\)\(\Leftrightarrow\left(3x+2y\right)\left(x-y\right)-p\left(3x+2y\right)+\left(x-y\right)^2-p^2=p^2\)\(\Leftrightarrow\left(3x+2y\right)\left(x-y-p\right)+\left(x-y-p\right)\left(x-y+p\right)=p^2\)\(\Leftrightarrow\left(x-y-p\right)\left(4x+y+p\right)=p^2=1.p^2\)
Do \(4x+y+p>x-y-p\)nên \(\hept{\begin{cases}x-y-p=1\left(1\right)\\4x+y+p=p^2\left(2\right)\end{cases}}\)(Do p là số nguyên tố)
Lấy (1) + (2), ta được: \(5x=p^2+1\Rightarrow5x-1=p^2\)(là số chính phương, đpcm)
1) chung to rang tong cua 3 so nguyen lien tiep chia het cho 3
2) chung to rang tong cua 5 so nguyen lien tiep chia het cho 5
1)
gọi ba số tự nhiên liên tiếp là a;a+1;a+2
ta có :
a+(a+1)+(a+2)=3.a+3=3.(a+1) chia hết cho 3
=>dpcm
2) gọi 5 số tự nhiên liên tiếp đó là a;a+1;a+2a;a+3;a+4
ta có :a+(a+1)+(a+2)+(a+3)+(a+4)=5a+10=5a+2.5=5(a+2) chia hết cho 5
=>dpcm
Chung minh rang bieu thuc:
A=4x(x+y)(x+y+z)(x+z)+x^2.z^2
bai 2. Chung minh rang voi moi so nguyen x phan so sau la phan so toi gia
a) 3x + 4/ 4x + 5
b)4x - 5/ 6 + 5x
Chung minh rang bieu thuc sau luon co gia tri duong voi moi gia tri cua x
B=x4-2x3+2x2-4x+5
\(B=x^4-2x^3+2x^2-4x+5\)
\(=\left(x^4-2x^3+x^2\right)+\left(x^2-4x+4\right)+1\)
\(=\left(x^2-x\right)^2+\left(x-2\right)^2+1\)
Vì: \(\begin{cases}\left(x^2-x\right)^2\ge0\\\left(x-2\right)^2\ge0\end{cases}\)\(\Rightarrow\left(x^2-x\right)^2+\left(x-2\right)^2\ge0\)
\(\Rightarrow\left(x^2-x\right)^2+\left(x-2\right)^2+1>0\)
Kết luận...............................................
B=x4−2x3+2x2−4x+5B=x4−2x3+2x2−4x+5
=(x4−2x3+x2)+(x2−4x+4)+1=(x4−2x3+x2)+(x2−4x+4)+1
=(x2−x)2+(x−2)2+1=(x2−x)2+(x−2)2+1
Vì: {(x2−x)2≥0(x−2)2≥0{(x2−x)2≥0(x−2)2≥0⇒(x2−x)2+(x−2)2≥0⇒(x2−x)2+(x−2)2≥0
⇒(x2−x)2+(x−2)2+1>0⇒(x2−x)2+(x−2)2+1>0
chung to rang so nguyen to p;p>5 khi chia cho 6 co the du 1 hoac 5
2)chung minh rang neu p va p+2 la so nguyen to lon hon 3 thi p+1 la mot hop so
1, Chung to rang (n+5)(n+8)chia het cho2
Chung to rang tich cua 2 so chan lien tiep thi chia het cho 8
2, cho A=5+52+53+.....+512. tim chu so tan cung cua A
3, tim cac so tu nhien x,y>1, biet
3x+1chia het cho y
3y+1chia het cho x