Bài 2 : Tìm x,y biết rằng : ( 1/2x -5)20 + ( y2 -1/4)10 < 0
Bài 1:Tìm x,y biết:
(1/2x-5)20+(y2-1/4)10<0
Bài 2:Tìm x thuộc Z biết:
(x-7)x+1-(x-7)x+11=0
Bài 3:A,Tìm GTNN của biểu thức A=(2x+1/3)4-1
B,Tìm GTLN của biểu thức B=-(4/9x-2/15)6+3
Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)
Ta có: (1/2x - 5)20 \(\ge\)0 \(\forall\)x
(y2 - 1/4)10 \(\ge\)0 \(\forall\)y
=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)0 \(\forall\)x;y
Theo (1) => ko có giá trị x;y t/m
Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0
=> (x - 7)x + 1.[1 - (x - 7)10] = 0
=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)
=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)
Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)0 \(\forall\)x
=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x
=> A \(\ge\)-1 \(\forall\)x
Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6
Vậy Min A = -1 tại x = -1/6
b) Ta có: -(4/9x - 2/5)6 \(\le\)0 \(\forall\)x
=> -(4/9x - 2/15)6 + 3 \(\le\)3 \(\forall\)x
=> B \(\le\)3 \(\forall\)x
Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10
vậy Max B = 3 tại x = 3/10
Bài 1. Tìm các số x, y, z, biết rằng 1. x/20 = y/9 = z/6 và x − 2y + 4z = 13; 2. x 3 = y 4 , y 5 = z 7 và 2x + 3y − z = 186. 3. x 2 = 2y 5 = 4z 7 và 3x + 5y + 7z = 123; 4. x 2 = 2y 3 = 3z 4 và xyz = −108.
Bài 1 ; TÌM X Y BIẾT
a , 5/7/8.y -3 .| 2/5.y - 3/1/5 | = 2/1/5
b, ( 2x^2 - 20 ) . ( 2y^4 + 1/3 ) = 0
c , 10 + 11+ 12 + 13 + ... + x = 5106
Ta có : 10 + 11+ 12 + 13 + ... + x = 5106
=> 1 + 2 + 3 + ..... + x = 5106 + (1 + 2 + 3 + ..... + 9)
=> 1 + 2 + 3 + ..... + x = 5106 + 45
=> 1 + 2 + 3 + ...... + x = 5151
=> \(\frac{x\left(x+1\right)}{2}=5151\)
<=> \(x\left(x+1\right)=10302\)
<=> x(x + 1) = 101.102
=> x = 101
Bài 1: Tìm các số x; y; z biết rằng \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)và 2x + 3y - z = 124.
Bài 2: Tìm các số x; y; z biết rằng \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
Tìm x,y:
a, x2 + (y -\(\dfrac{1}{10}\))4 = 0
b, (\(\dfrac{1}{2}\) . -5)20 + (y2 - \(\dfrac{1}{4}\))10 ≤0
a: Ta có: \(x^2\ge0\forall x\)
\(\left(y-\dfrac{1}{10}\right)^4\ge0\forall y\)
Do đó: \(x^2+\left(y-\dfrac{1}{10}\right)^4\ge0\forall x,y\)
Dấu '=' xảy ra khi \(\left(x,y\right)=\left(0;\dfrac{1}{10}\right)\)
Tìm x,y biết
(1/2x-5)^20+(y^2-1/4)^10≤0
Bài 1: Tìm x , y , z biết:
a) x5 = x3 (x Z)
b) (5x + 25)20 + (2y - 8)22 + (3z - 27)24 0 (x, y, z Z)
c) 2x + 168 = y2 (x, y N)
Bài 2 : Cho A = ; B = . So sánh A và B.
Bài 3: Cho A = 1 + 5 + 52 + 53 + … + 52016 + 52017 . tìm số dư trong phép chia A cho 31
Bài 4: Cho M = 9999932015 - 5555572017. Chứng minh rằng M chia hết cho 10.
Bài 1: Tìm x , y , z biết:
a) x5 = x3 (x Z)
b) (5x + 25)20 + (2y - 8)22 + (3z - 27)24 0 (x, y, z Z)
c) 2x + 168 = y2 (x, y N)
Bài 2 : Cho A = ; B = . So sánh A và B.
Bài 3: Cho A = 1 + 5 + 52 + 53 + … + 52016 + 52017 . tìm số dư trong phép chia A cho 31
Bài 4: Cho M = 9999932015 - 5555572017. Chứng minh rằng M chia hết cho 10.
Bài 1 : Tìm x,y
f) x2 + y2 - 2x + 6y + 10 = 0
g) x2 + y2 +1 = xy +x + y
h) 5x2 - 2x.(2 + y ) + y2 +1 = 0
a, (x^2 -2x+1)+(y^2 +6y+9) =0
(x-1)^2 +(y+3)^2 =0
Do đó: x-1=0 và y+3=0
Vậy x=1 và y=-3
b, x^2 +y^2 +1=xy+x+y
2x^2 +2y^2 +2=2xy+2x+2y
2x^2 +2y^2 -2xy-2x-2y +2=0
(x^2 -2x+1)+(y^2 -2y+1)+ (x^2 +y^2 -2xy)=0
(x-1)^2 +(y-1)^2 +(x-y)^2 =0
Suy ra: x-1=0, y-1=0 và x-y=0
Vậy x=1,y=1
c,5x^2 - 4x-2xy+y^2 +1=0
(4x^2 -4x+1)+(x^2 -2xy+y^2 )=0
(2x-1)^2 +(x-y)^2 =0
Do đó: 2x-1 =0 và x=y suy ra: x=0,5 và x=y
Vậy x=y=0,5