Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen huu tien
Xem chi tiết
mon wang
Xem chi tiết
phạm minh khuê
Xem chi tiết
phạm minh khuê
1 tháng 3 2017 lúc 21:41

ai lam on giup to voi

Thái Đào
Xem chi tiết
Thái Đào
Xem chi tiết
Hương Yangg
Xem chi tiết
Hoàng Lê Bảo Ngọc
6 tháng 9 2016 lúc 18:13

Ta có : \(2x^2+y^2+3xy+3x+2y+2=0\)

\(\Leftrightarrow y^2+y\left(3x+2\right)+2x^2+3x+2=0\)

Nhận thấy pt trên là phương trình bậc hai ẩn y  . Do đó ta xét 

\(\Delta=\left(3x+2\right)^2-4\left(2x^2+3x+2\right)=x^2-4\)

Để pt có nghiệm thì \(\Delta\ge0\Rightarrow x^2-4\ge0\) \(\Rightarrow\left[\begin{array}{nghiempt}x\ge2\\x\le-2\end{array}\right.\)

Mà x,y là nghiệm nguyên của pt nên \(x^2-4\) là bình phương của một số hữu tỉ , đặt \(x^2-4=k^2\Rightarrow\left(x-k\right)\left(x+k\right)=4\) . Ta luôn có x + k > x - k với k > 0 

Xét các trường hợp với x-k và x+k là các số nguyên được 

\(\begin{cases}x=2\\k=0\end{cases}\) và \(\begin{cases}x=-2\\k=0\end{cases}\)

Suy ra được : \(\begin{cases}x=-2\\y=2\end{cases}\) và \(\begin{cases}x=2\\y=-4\end{cases}\)

Sakura
Xem chi tiết
Kresol♪
Xem chi tiết
Edogawa Conan
10 tháng 9 2020 lúc 21:17

2x2 + y2 + 3xy + 3x + 2y + 2 = 0

<=> 8x2 + 4y2 + 12xy + 12x + 8y + 8 = 0

<=> (4y2 + 12xy + 9x2) + 4(3x + 2y) + 4 - x2 + 4 = 0

<=> (3x + 2y + 2)2 - x2 = -4

<=> (3x + 2y + 2 - x)(3x + 2y + 2 + x) = -4

<=> (2x + 2y + 2)(4x + 2y + 2) = -4

<=> (x + y + 1)(2x + y + 1) = -1

Xét các TH xảy ra <=>

\(\hept{\begin{cases}x+y+1=1\\2x+y+1=-1\end{cases}}\)

\(\hept{\begin{cases}x+y+1=-1\\2x+y+1=1\end{cases}}\)

(tự tính)

Khách vãng lai đã xóa
Tạ Đức Hoàng Anh
10 tháng 9 2020 lúc 21:27

Ta có: \(2x^2+y^2+3xy+3x+2y+2=0\)

    \(\Leftrightarrow y^2+y.\left(3x+2\right)+2x^2+3x+2=0\)

Nhận thấy pt trên là phương trình bậc hai ẩn y. Do đó ta xét :

    \(\Delta=\left(3x+2\right)^2-4\left(2x^2+3x+2\right)=x^2-4\)

Để pt có nghiệm thì \(\Delta\ge0\)\(\Rightarrow\)\(x^2-4\ge0\)\(\Rightarrow\)\(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\)

Mà x,y là nghiệm nguyên của pt nên \(x^2-4\) là bình phương của một số hữu tỉ 

Đặt \(x^2-4=k^2\)\(\Rightarrow\)\(\left(x-k\right).\left(x+k\right)=4\)

Ta luôn có \(x+k>x-k\) với \(k>0\)

Xét các trường hợp với \(x-k\)\(x+k\)là các số nguyên được 

\(\hept{\begin{cases}x=2\\k=0\end{cases}}\)và  \(\hept{\begin{cases}x=-2\\k=0\end{cases}}\)

Suy ra được \(\hept{\begin{cases}x=-2\\y=2\end{cases}}\)và  \(\hept{\begin{cases}x=2\\y=-4\end{cases}}\)

Học tốt

Khách vãng lai đã xóa
Akali
10 tháng 9 2020 lúc 21:39

2x2 + y2 + 3xy + 3x + 2y + 2 = 0

<=> 16x2 + 8y2 + 24xy + 24x + 16y + 16 = 0

<=> ( 4x )2 + 24x ( y + 1 ) + 8y2 + 16y + 16 = 0

<=> ( 4x )2 + 24x ( y + 1 ) + [ 3( y + 1 ) ]2 - [ 3( y + 1 ) ]2 + 8y+ 16y + 16 = 0

<=> ( 4x + 3y + 3 )2 - 9y2 - 18y - 9 + 8y2 + 16y + 16 = 0

<=> ( 4x + 3y + 3 )2 - ( y + 1 )2 = - 8

<=> ( y + 1 )2 - ( 4x + 3y + 3 )= 8

<=> 4 ( x + y + 4 ) . ( - 2 ) ( 2x + y + 2)  = 8

<=> ( x + y + 4 ) ( 2x + y + 1 ) = - 1

\(\Leftrightarrow\hept{\begin{cases}x+y+4=1\\2x+y+1=-1\end{cases}}\)hoặc \(\hept{\begin{cases}x+y+4=-1\\2x+y+1=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=2\\y=-4\end{cases}}\)hoặc \(\hept{\begin{cases}x=-2\\y=2\end{cases}}\)

Khách vãng lai đã xóa
Mai Thị Thúy
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 7 2021 lúc 11:57

Với \(xy=0\) là nghiệm

Với \(xy\ne0\)

\(\Rightarrow\left\{{}\begin{matrix}y-\dfrac{2}{x}+\dfrac{3x}{y}=0\\\dfrac{y}{x}+x+\dfrac{2}{y}=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y-\dfrac{2}{x}=-\dfrac{3x}{y}\\x+\dfrac{2}{y}=-\dfrac{y}{x}\end{matrix}\right.\)

\(\Rightarrow\left(y-\dfrac{2}{x}\right)\left(x+\dfrac{2}{y}\right)=3\)

\(\Leftrightarrow xy-\dfrac{4}{xy}-3=0\)

\(\Rightarrow\left(xy\right)^2-3xy-4=0\Rightarrow\left[{}\begin{matrix}xy=-1\\xy=4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{y}\\x=\dfrac{4}{y}\end{matrix}\right.\) thế vào \(y^2+x^2y+2x=0\)

\(\Rightarrow\left[{}\begin{matrix}y^2+\dfrac{1}{y}-\dfrac{2}{y}=0\\y^2+\dfrac{16}{y}+\dfrac{8}{y}=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y^3=1\\y^3=-24\end{matrix}\right.\)

\(\Leftrightarrow...\)