\(\sqrt[4]{3}.243^{\frac{2\chi+3}{\chi+8}=\frac{1}{9}.9^{\frac{\chi+8}{\chi+2}}}\)
bài 1:rút gọn biểu thức:
a)\(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}\)
b)\(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)
c)\(\left(\frac{2}{\sqrt{3}-1}+\frac{3}{\sqrt{3}-2}+\frac{15}{3-\sqrt{3}}\right)\times\frac{1}{\sqrt{3}+5}\)
d)\(2\sqrt{40\sqrt{12}}+3\sqrt{5\sqrt{48}}-2\sqrt{\sqrt{75}}-4\sqrt{15\sqrt{27}}\)
bài 2:giải phương trình
a)\(\sqrt{9-12\chi+4\chi^2}=4\)
b)\(\sqrt{\chi^2-2\chi+1}+\sqrt{\chi^2-6\chi+9}=1\)
GIÚP EM VỚI EM ĐANG CẦN GẤP Ạ!!!!!!!!!!!!!!!!!
\(\frac{7}{9}\chi\frac{8}{5}-\frac{7}{9}\chi\frac{3}{5}\)
Tính nhanh
\(\frac{7}{9}\cdot\frac{8}{5}-\frac{7}{9}\cdot\frac{3}{5}\)
\(=\frac{7}{9}\left(\frac{8}{5}-\frac{3}{5}\right)\)
\(=\frac{7}{9}\cdot\frac{5}{5}\)
\(=\frac{7}{9}\cdot1=\frac{7}{9}\)
7/9 * 8/5 - 7/9 * 3/5
= 7/9 * ( 8/5 - 3/5 )
= 7/9 * 1
= 7/9
^^ Ủng hộ nha!!!
Tìm x biết \(\frac{\chi+5}{10}+\frac{\chi+6}{9}=\frac{\chi+7}{8}+\frac{\chi+8}{7}\)
Tìm x
\(\left(x-\sqrt{2}\right)^2=\frac{5}{9}\)
\(\frac{4-x}{6-x}=\frac{x-3}{x-8}\)
ai giải chi tiết 3 tick nhé
\(\frac{2}{6}\)-\(\frac{2}{7}\)+\(\frac{2}{7}\)-\(\frac{2}{8}\)+\(\frac{2}{8}\)-\(\frac{2}{9}\)+..........+\(\frac{2}{\chi\left(\chi+1\right)}\)= \(\frac{2}{9}\)
So sánh A và B: (giải đầy đủ và chi tiết hộ mik nhé)
\(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}\); \(B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}\)
AI LM ĐẦY ĐỦ VÀ CHI TIẾT SẼ ĐC TICK NHÉ.THANKS!!!
Ta có:
\(4\left(1+5+5^2+...+5^9\right)=5\left(1+5+5^2+...+5^9\right)-\left(1+5+5^2+...+5^9\right)\)
\(=5+5^2+5^3+...+5^{10}-1-5-5^2-...-5^9\)
\(=5^{10}-1+\left(5-5\right)+\left(5^2-5^5\right)+..+\left(5^9-5^9\right)\)
\(=5^{10}-1\)
=> \(1+5+5^2+...+5^9=\frac{5^{10}-1}{4}\)
Tương tự: \(1+5+5^2+...+5^8=\frac{5^9-1}{4}\)
\(1+3+3^2+...+3^9=\frac{3^{10}-1}{2}\)
\(1+3+3^2+...+3^8=\frac{3^9-1}{2}\)
=> \(A=\frac{5^{10}-1}{5^9-1}>\frac{5^{10}-1}{5^9}=5-\frac{1}{5^9}>4;\)
\(B=\frac{3^{10}-1}{3^9-1}< \frac{3^{10}}{3^9-1}=3+\frac{3}{3^9-1}< 4;\)
=> A > B.
1. ʃ(cos(\(\frac{\pi}{2}x\))\(-\)\(\frac{2}{6x+5}\))dx
2. ʃ\(2x^3\)\(\sqrt{4-x^4}\)dx
3.ʃ2x\(\sqrt{\varepsilon^{4+x^2}}\)dx
4.ʃx\(\sqrt[3]{1-x^2}\)dx
5.ʃcosx\(\varepsilon^{\sin\chi}\)dx
6.ʃ\(\frac{\cos\chi}{1+sINx}\)dx
7.ʃ(x+1)\(\sqrt{x-1}\)dx
8.ʃ(2 x+1)\(^{ }\)20dx
9.ʃ\(\frac{9x^2}{\sqrt{1-x^3}}dX\)
10.ʃ\(\frac{\chi}{\sqrt{2x+3}}\)dx
\(I_1=\int cos\left(\frac{\pi x}{2}\right)dx-\int\frac{2}{6x+5}dx=\frac{2}{\pi}\int cos\left(\frac{\pi x}{2}\right)d\left(\frac{\pi x}{2}\right)-\frac{1}{3}\int\frac{d\left(6x+5\right)}{6x+5}\)
\(=\frac{2}{\pi}sin\left(\frac{\pi x}{2}\right)-\frac{1}{3}ln\left|6x+5\right|+C\)
\(I_2=-\frac{1}{2}\int\left(4-x^4\right)^{\frac{1}{2}}d\left(4-x^4\right)=-\frac{1}{2}.\frac{\left(4-x^4\right)^{\frac{3}{2}}}{\frac{3}{2}}+C=\frac{-\sqrt{\left(4-x^4\right)^3}}{3}+C\)
\(I_3=2\int e^{\frac{1}{2}\left(4+x^2\right)}d\left(\frac{1}{2}\left(4+x^2\right)\right)=2e^{\frac{1}{2}\left(4+x^2\right)}+C=2\sqrt{e^{4+x^2}}+C\)
\(I_4=-\frac{1}{2}\int\left(1-x^2\right)^{\frac{1}{3}}d\left(1-x^2\right)=-\frac{1}{2}.\frac{\left(1-x^2\right)^{\frac{4}{3}}}{\frac{4}{3}}+C=-\frac{3}{8}\sqrt[3]{\left(1-x^2\right)^4}+C\)
\(I_5=\int e^{sinx}d\left(sinx\right)=e^{sinx}+C\)
\(I_6=\int\frac{d\left(1+sinx\right)}{1+sinx}=ln\left(1+sinx\right)+C\)
\(I_7=\int\left(x+1\right)\sqrt{x-1}dx\)
Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow dx=2tdt\)
\(\Rightarrow I_7=\int\left(t^2+2\right).t.2t.dt=\int\left(2t^4+4t^2\right)dt=\frac{2}{5}t^5+\frac{4}{3}t^3+C\)
\(=\frac{2}{5}\sqrt{\left(1-x\right)^5}+\frac{4}{3}\sqrt{\left(1-x\right)^3}+C\)
\(I_8=\int\left(2x+1\right)^{20}dx\)
Đặt \(2x+1=t\Rightarrow2dx=dt\Rightarrow dx=\frac{1}{2}dt\)
\(\Rightarrow I_8=\frac{1}{2}\int t^{20}dt=\frac{1}{42}t^{21}+C=\frac{1}{42}\left(2x+1\right)^{21}+C\)
\(I_9=-3\int\left(1-x^3\right)^{-\frac{1}{2}}d\left(1-x^3\right)=-3.\frac{\left(1-x^3\right)^{\frac{1}{2}}}{\frac{1}{2}}+C=-6\sqrt{1-x^3}+C\)
\(I_{10}=\int\frac{x}{\sqrt{2x+3}}dx\)
Đặt \(\sqrt{2x+3}=t\Rightarrow x=\frac{1}{2}t^2-\frac{3}{2}\Rightarrow dx=t.dt\)
\(\Rightarrow I_{10}=\int\frac{\frac{1}{2}t^2-\frac{3}{2}}{t}.t.dt=\frac{1}{2}\int\left(t^2-3\right)dt=\frac{2}{3}t^3-\frac{3}{2}t+C\)
\(=\frac{2}{3}\sqrt{\left(2x+3\right)^3}-\frac{3}{2}\sqrt{2x+3}+C\)
a/ \(I=\int cos\left(\frac{\pi x}{2}\right)dx-\int\frac{2}{6x+5}dx=I_1+I_2\)
Xét \(I_1=\int cos\left(\frac{\pi x}{2}\right)dx\)
Đặt \(u=\frac{\pi x}{2}\Rightarrow x=\frac{2}{\pi}u\Rightarrow dx=\frac{2}{\pi}du\)
\(\Rightarrow I_1=\int cosu.\frac{2}{\pi}du=\frac{2}{\pi}\int cosu.du=\frac{2}{\pi}sinu+C=\frac{2}{\pi}sin\left(\frac{\pi x}{2}\right)+C\)
Xét \(I_2=\int\frac{2}{6x+5}dx\)
Đặt \(u=6x+5\Rightarrow x=\frac{1}{6}u-\frac{5}{6}\Rightarrow dx=\frac{1}{6}du\)
\(\Rightarrow I_2=\int\frac{2}{u}.\frac{1}{6}du=\frac{1}{3}\int\frac{du}{u}=\frac{1}{3}ln\left|u\right|+C=\frac{1}{3}ln\left|6x+5\right|+C\)
\(\Rightarrow I=I_1+I_2=\frac{2}{\pi}sin\left(\frac{\pi}{2}x\right)-\frac{1}{3}ln\left|6x+5\right|+C\)
Cho biểu thức B = \(\left(\frac{x+3}{x-3}+\frac{2\chi^2-6}{9-\chi^2}+\frac{\chi}{\chi+3}\right):\frac{6\chi-12}{2\chi^2-18}\)
a) tìm tập xác định và rút gọn biểu thức
b) Tìm giá trị của B với x=1 hoặc x= -3
c) tìm giá trị nguyên của x để B nhận giá trị nguyên
a, B=[(x+3)/(x-3)+(2x^2-6)/(9-x^2)+x/(x+3)]:[(6x-12)/(2x^2-18)]
=[(x+3)/(x-3)+ -(2x^2-6)/(x^2-9)+x/(x+3)]:[(6x-12)/(2x^2-18)]
=[(x+3)/(x-3)+ -(2x^2-6)/(x-3)(x+3)+x/(x+3)]:[(6x-12)/2(x-3)(x+3)]
={[(x+3)^2-2x^2+6+x(x-3)]/(x-3)(x+3)}:[6(x-2)/2(x-3)(x+3)]
=(x^2+6x+9-2x^2+6+x^2-3x)/(x-3)(x+3): 6(x-2)/2(x-3)(x+3)
=3x+15/(x-3)(x+3): 6(x-2)/2(x-3)(x+3)
=3(x+5)/(x-3)(x+3): 6(x-2)/2(x-3)(x+3
=3(x+5)/(x-3)(x+3).2(x-3)(x+3)/6(x-2)
=3(x+5).6/(x-2)
=6(x+5)/6(x-2)
=x+5/x-2
b,Ta thay : x=1
=>x+5/x-2=1+5/1-2=-6
Ta thay : x=-3
=>x+5/x-2=-3+5/-3-2=-2/5
c, Ta co : x+5/x-2=0
x+5=(x-2).0
x+5=0
x=-5
Vậy : x=-5
Cho biểu thức: Q=(1-\(\frac{x-3\sqrt{x}}{x-9}\)) : (\(\frac{\sqrt{x}-3}{2-\sqrt{x}}+\frac{\sqrt{x}-2}{3+\sqrt{x}}-\frac{9-x}{x+\sqrt{x}-6}\))
Giải chi tiết giúp mình vớii
Bạn tự tìm điều kiện xác định nhé :)
\(Q=\left(1-\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{\sqrt{x}-3}{2-\sqrt{x}}+\frac{\sqrt{x}-2}{3+\sqrt{x}}-\frac{9-x}{x+\sqrt{x}-6}\right)\)
\(=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\left(\frac{\left(3-\sqrt{x}\right)\left(\sqrt{x}+3\right)+\left(\sqrt{x}-2\right)^2-9+x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\)
\(=\frac{3}{\sqrt{x}+3}:\frac{9-x+x-4\sqrt{x}+4-9+x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=\frac{3}{\sqrt{x}+3}:\frac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{3}{\sqrt{x}+3}.\frac{\sqrt{x}+3}{\sqrt{x}-2}=\frac{3}{\sqrt{x}-2}\)