Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Hiền Ngọc
Xem chi tiết
Bảo Nguyễn Lê Gia
5 tháng 7 2019 lúc 21:23

undefined

Bảo Nguyễn Lê Gia
5 tháng 7 2019 lúc 21:22

undefined

Nguyễn Thị Hà My
Xem chi tiết
lê thị thu huyền
28 tháng 6 2017 lúc 18:21

\(\frac{7}{9}\cdot\frac{8}{5}-\frac{7}{9}\cdot\frac{3}{5}\)

\(=\frac{7}{9}\left(\frac{8}{5}-\frac{3}{5}\right)\)

\(=\frac{7}{9}\cdot\frac{5}{5}\)

\(=\frac{7}{9}\cdot1=\frac{7}{9}\)

Nguyễn Quang Tâm
28 tháng 6 2017 lúc 18:17

ra \(\frac{7}{9}\)nha

I have a crazy idea
28 tháng 6 2017 lúc 18:22

7/9 * 8/5 - 7/9 * 3/5 

= 7/9 * ( 8/5 - 3/5 ) 

= 7/9 * 1 

= 7/9 

^^ Ủng hộ nha!!!

Trần thị hoan
Xem chi tiết
Phúc Tiên
Xem chi tiết
bé kun
28 tháng 12 2016 lúc 15:57

có 2 ý hả bạn

bé kun
28 tháng 12 2016 lúc 15:57

có 2 ý thì mik giải dc

Barbie Girl
Xem chi tiết
Xem chi tiết
Nguyễn Linh Chi
14 tháng 3 2020 lúc 11:56

Ta có: 

\(4\left(1+5+5^2+...+5^9\right)=5\left(1+5+5^2+...+5^9\right)-\left(1+5+5^2+...+5^9\right)\)

\(=5+5^2+5^3+...+5^{10}-1-5-5^2-...-5^9\)

\(=5^{10}-1+\left(5-5\right)+\left(5^2-5^5\right)+..+\left(5^9-5^9\right)\)

\(=5^{10}-1\)

=> \(1+5+5^2+...+5^9=\frac{5^{10}-1}{4}\)

Tương tự: \(1+5+5^2+...+5^8=\frac{5^9-1}{4}\)

\(1+3+3^2+...+3^9=\frac{3^{10}-1}{2}\)

\(1+3+3^2+...+3^8=\frac{3^9-1}{2}\)

=> \(A=\frac{5^{10}-1}{5^9-1}>\frac{5^{10}-1}{5^9}=5-\frac{1}{5^9}>4;\)

\(B=\frac{3^{10}-1}{3^9-1}< \frac{3^{10}}{3^9-1}=3+\frac{3}{3^9-1}< 4;\)

=> A > B.

Khách vãng lai đã xóa
Trần Thị Hằng
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 11 2019 lúc 18:22

\(I_1=\int cos\left(\frac{\pi x}{2}\right)dx-\int\frac{2}{6x+5}dx=\frac{2}{\pi}\int cos\left(\frac{\pi x}{2}\right)d\left(\frac{\pi x}{2}\right)-\frac{1}{3}\int\frac{d\left(6x+5\right)}{6x+5}\)

\(=\frac{2}{\pi}sin\left(\frac{\pi x}{2}\right)-\frac{1}{3}ln\left|6x+5\right|+C\)

\(I_2=-\frac{1}{2}\int\left(4-x^4\right)^{\frac{1}{2}}d\left(4-x^4\right)=-\frac{1}{2}.\frac{\left(4-x^4\right)^{\frac{3}{2}}}{\frac{3}{2}}+C=\frac{-\sqrt{\left(4-x^4\right)^3}}{3}+C\)

\(I_3=2\int e^{\frac{1}{2}\left(4+x^2\right)}d\left(\frac{1}{2}\left(4+x^2\right)\right)=2e^{\frac{1}{2}\left(4+x^2\right)}+C=2\sqrt{e^{4+x^2}}+C\)

\(I_4=-\frac{1}{2}\int\left(1-x^2\right)^{\frac{1}{3}}d\left(1-x^2\right)=-\frac{1}{2}.\frac{\left(1-x^2\right)^{\frac{4}{3}}}{\frac{4}{3}}+C=-\frac{3}{8}\sqrt[3]{\left(1-x^2\right)^4}+C\)

\(I_5=\int e^{sinx}d\left(sinx\right)=e^{sinx}+C\)

\(I_6=\int\frac{d\left(1+sinx\right)}{1+sinx}=ln\left(1+sinx\right)+C\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
15 tháng 11 2019 lúc 18:30

\(I_7=\int\left(x+1\right)\sqrt{x-1}dx\)

Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow dx=2tdt\)

\(\Rightarrow I_7=\int\left(t^2+2\right).t.2t.dt=\int\left(2t^4+4t^2\right)dt=\frac{2}{5}t^5+\frac{4}{3}t^3+C\)

\(=\frac{2}{5}\sqrt{\left(1-x\right)^5}+\frac{4}{3}\sqrt{\left(1-x\right)^3}+C\)

\(I_8=\int\left(2x+1\right)^{20}dx\)

Đặt \(2x+1=t\Rightarrow2dx=dt\Rightarrow dx=\frac{1}{2}dt\)

\(\Rightarrow I_8=\frac{1}{2}\int t^{20}dt=\frac{1}{42}t^{21}+C=\frac{1}{42}\left(2x+1\right)^{21}+C\)

\(I_9=-3\int\left(1-x^3\right)^{-\frac{1}{2}}d\left(1-x^3\right)=-3.\frac{\left(1-x^3\right)^{\frac{1}{2}}}{\frac{1}{2}}+C=-6\sqrt{1-x^3}+C\)

\(I_{10}=\int\frac{x}{\sqrt{2x+3}}dx\)

Đặt \(\sqrt{2x+3}=t\Rightarrow x=\frac{1}{2}t^2-\frac{3}{2}\Rightarrow dx=t.dt\)

\(\Rightarrow I_{10}=\int\frac{\frac{1}{2}t^2-\frac{3}{2}}{t}.t.dt=\frac{1}{2}\int\left(t^2-3\right)dt=\frac{2}{3}t^3-\frac{3}{2}t+C\)

\(=\frac{2}{3}\sqrt{\left(2x+3\right)^3}-\frac{3}{2}\sqrt{2x+3}+C\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
15 tháng 11 2019 lúc 22:19

a/ \(I=\int cos\left(\frac{\pi x}{2}\right)dx-\int\frac{2}{6x+5}dx=I_1+I_2\)

Xét \(I_1=\int cos\left(\frac{\pi x}{2}\right)dx\)

Đặt \(u=\frac{\pi x}{2}\Rightarrow x=\frac{2}{\pi}u\Rightarrow dx=\frac{2}{\pi}du\)

\(\Rightarrow I_1=\int cosu.\frac{2}{\pi}du=\frac{2}{\pi}\int cosu.du=\frac{2}{\pi}sinu+C=\frac{2}{\pi}sin\left(\frac{\pi x}{2}\right)+C\)

Xét \(I_2=\int\frac{2}{6x+5}dx\)

Đặt \(u=6x+5\Rightarrow x=\frac{1}{6}u-\frac{5}{6}\Rightarrow dx=\frac{1}{6}du\)

\(\Rightarrow I_2=\int\frac{2}{u}.\frac{1}{6}du=\frac{1}{3}\int\frac{du}{u}=\frac{1}{3}ln\left|u\right|+C=\frac{1}{3}ln\left|6x+5\right|+C\)

\(\Rightarrow I=I_1+I_2=\frac{2}{\pi}sin\left(\frac{\pi}{2}x\right)-\frac{1}{3}ln\left|6x+5\right|+C\)

Khách vãng lai đã xóa
Nguyễn Văn  2
Xem chi tiết
thien ty tfboys
2 tháng 2 2017 lúc 16:37

a, B=[(x+3)/(x-3)+(2x^2-6)/(9-x^2)+x/(x+3)]:[(6x-12)/(2x^2-18)]

=[(x+3)/(x-3)+ -(2x^2-6)/(x^2-9)+x/(x+3)]:[(6x-12)/(2x^2-18)]

=[(x+3)/(x-3)+ -(2x^2-6)/(x-3)(x+3)+x/(x+3)]:[(6x-12)/2(x-3)(x+3)]

={[(x+3)^2-2x^2+6+x(x-3)]/(x-3)(x+3)}:[6(x-2)/2(x-3)(x+3)]

=(x^2+6x+9-2x^2+6+x^2-3x)/(x-3)(x+3): 6(x-2)/2(x-3)(x+3)

=3x+15/(x-3)(x+3): 6(x-2)/2(x-3)(x+3)

=3(x+5)/(x-3)(x+3): 6(x-2)/2(x-3)(x+3

=3(x+5)/(x-3)(x+3).2(x-3)(x+3)/6(x-2)

=3(x+5).6/(x-2)

=6(x+5)/6(x-2)

=x+5/x-2

b,Ta thay : x=1

=>x+5/x-2=1+5/1-2=-6

Ta thay : x=-3

=>x+5/x-2=-3+5/-3-2=-2/5

c, Ta co : x+5/x-2=0

x+5=(x-2).0

x+5=0

x=-5

Vậy : x=-5

Lê Minh Đức
Xem chi tiết
Hoàng Lê Bảo Ngọc
11 tháng 10 2016 lúc 17:41

Bạn tự tìm điều kiện xác định nhé :)

\(Q=\left(1-\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{\sqrt{x}-3}{2-\sqrt{x}}+\frac{\sqrt{x}-2}{3+\sqrt{x}}-\frac{9-x}{x+\sqrt{x}-6}\right)\)

\(=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\left(\frac{\left(3-\sqrt{x}\right)\left(\sqrt{x}+3\right)+\left(\sqrt{x}-2\right)^2-9+x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\)

\(=\frac{3}{\sqrt{x}+3}:\frac{9-x+x-4\sqrt{x}+4-9+x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=\frac{3}{\sqrt{x}+3}:\frac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{3}{\sqrt{x}+3}.\frac{\sqrt{x}+3}{\sqrt{x}-2}=\frac{3}{\sqrt{x}-2}\)