GPT: \(x^3+2=3\sqrt[3]{3x-2}\)
GPT : \(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
GPT : \(\sqrt[3]{x+1}+\sqrt[3]{x+2}=1+\sqrt[3]{x^2+3x+2}\)
\(\sqrt[3]{x+1}+\sqrt[3]{x+2}=1+\sqrt[3]{x^2+3x+2}\)
\(\Rightarrow\sqrt[3]{x+1}+\sqrt[3]{x+2}=1+\sqrt[3]{\left(x+1\right)\left(x+2\right)}\)
\(\Rightarrow\sqrt[3]{x+1}-1-\sqrt[3]{x+1}.\sqrt[3]{x+2}+\sqrt[3]{x+2}=0\)
\(\Rightarrow\left(\sqrt[3]{x+1}-1\right)-\sqrt[3]{x+2}\left(\sqrt[3]{x+1}-1\right)=0\)
\(\Rightarrow\left(\sqrt[3]{x+1}-1\right)\left(1-\sqrt[3]{x+2}\right)=0\)
Th1 : \(\sqrt[3]{x+1}-1=0\Rightarrow\sqrt[3]{x+1}=1\)
\(\Rightarrow x+1=1\Rightarrow x=0\)
Th2 : \(\sqrt[3]{x+2}-1=0\Rightarrow\sqrt[3]{x+2}=1\)
\(\Rightarrow x+2=1\Rightarrow x=-1\)
Vậy \(x\in\left\{0;-1\right\}\)
gpt:
\(\sqrt{x^3+x^2+3x+3}+\sqrt{2x}=\sqrt{x^2+3}+\sqrt{2x^2+2x}\)
GPT : \(\sqrt[3]{3x^2-x+2001}-\sqrt[3]{3x^2-7x+2002}-\sqrt[3]{6x-2003}=\sqrt[3]{2002}\)
mình giải bằng casio ra x = 0,767591877
sao bạn lại có chữ hiệp sĩ ở bên cạnh tên vậy?
sao vậy bạn
k mk nha
Em thử ạ!
Đặt \(\sqrt[3]{3x^2-x+2011}=a;\sqrt[3]{3x^3-7x+2002}=b;\sqrt[3]{6x-2003}=c\)
Thì được: \(a^3-b^3-c^3=2002\) (1)
Mặt khác theo đề bài \(\left(a-b-c\right)^3=2002\) (2)
Từ (1) và (2) ta được: \(a^3-b^3-c^3-\left(a-b-c\right)^3=0\)
\(\Leftrightarrow3\left(b-a\right)\left(c-a\right)\left(c+b\right)=0\)
\(\Leftrightarrow a=b\text{ hoặc: }c=a\text{ hoặc }c+b=0\)
+) Với a= b thì \(a^3=b^3\Leftrightarrow3x^2-x+2001=3x^2-7x+2002\)
\(\Leftrightarrow6x-1=0\Leftrightarrow x=\frac{1}{6}\)
... Anh làm tiếp thử ạ.
\(GPT:2\sqrt{x+3}-\sqrt[3]{3x+5}=2\)
GPT :
\(3\sqrt{x^3+8}=2x^2-3x+10\)
Làm cách kia cx đc, nhưng làm vậy ko thông minh lắm.
\(Đk:x\ge-2\)
\(3\sqrt{x^3+8}=2x^2-3x+10\)
\(\Leftrightarrow3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}=2x^2-3x+10\)
Ta đặt \(\left\{{}\begin{matrix}u=\sqrt{x+2}\left(u\ge0\right)\\v=\sqrt{x^2-2x+4}\left(v\ge2\sqrt{3}\right)\end{matrix}\right.\)
Khi đó phương trình trở thành:
\(3uv=2v^2+u^2\)
\(\Leftrightarrow2v^2-3uv+u^2=0\)
\(\Leftrightarrow2v^2-2uv-uv+u^2=0\)
\(\Leftrightarrow2v\left(v-u\right)-u\left(v-u\right)=0\)
\(\Leftrightarrow\left(v-u\right)\left(2v-u\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}v=u\\2v=u\end{matrix}\right.\)
Với \(v=u\Rightarrow\sqrt{x^2-2x+4}=\sqrt{x+2}\)
\(\Rightarrow x^2-2x+4=x+2\)
\(\Leftrightarrow x^2-3x+2=0\)
\(\Leftrightarrow x^2-x-2x+2=0\)
\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=2\left(nhận\right)\end{matrix}\right.\)
Với \(2v=u\Rightarrow2\sqrt{x^2-2x+4}=\sqrt{x+2}\)
\(\Rightarrow4\left(x^2-2x+4\right)=x+2\)
\(\Leftrightarrow4x^2-8x+16=x+2\)
\(\Leftrightarrow4x^2-9x+14=0\)
\(\Delta=\left(-9\right)^2-4.4.14=-143< 0\)
\(\Rightarrow\)Phương trình vô nghiệm.
Vậy phương trình đã cho có tập nghiệm \(S=\left\{1;2\right\}\)
\(3\sqrt{x^3+8}=2x^2-3x+10\)
\(\Leftrightarrow3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}=2x^2-3x+10\left(1\right)\)
\(\Leftrightarrow9\left(x+2\right)\left(x^2-2x+4\right)=\left(2x^2-3x+10\right)^2\)
\(\Leftrightarrow9\left(x^3-2x^2+4x+2x^2-4x+8\right)=4x^4-6x^3+9x^2-30x+20x^2-30x+100\)
\(\Leftrightarrow9x^3-18x^2+36x+18x^2-36x+72-4x^4+6x^3-20x^2+6x^3-9x^2+30x-20x^2+30x-100=0\)
\(\Leftrightarrow-4x^4+21x^3-49x^2+60x-28=0\left(2\right)\)
Nhận thấy, \(x=1\) và \(x=2\) là nghiệm của phương trình \(\left(2\right)\)
\(\left(2\right)\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(-4x^2+9x-14\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\\-4x^2+9x-14=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\\left(x-\dfrac{9}{8}\right)^2=-\dfrac{143}{16}\left(\text{vô lí}\right)\end{matrix}\right.\)
Thử lại nghiệm \(x=1;x=2\) vào phương trình \(\left(1\right)\) thấy nghiệm \(x=2\) thỏa mãn.
GPT: \(2\left(x-3\right)\sqrt{x^3+3x^2+x+3}+2\sqrt{x+1}=2x^3-11x^2+29x-38\)
GPT \(\sqrt{x^2-3x+2}=\sqrt{10x-20}-\sqrt{x-3}\)
Gpt \(\left(3x+1\right)\sqrt{x^2+3}=3x^2+2x+3\)
Đặt \(\sqrt{x^2+3}=t\left(t\ge0\right)\)
=>\(t^2=x^2+3\Leftrightarrow x^2=t^2-3\)
Pt trở thành \(\left(3x+1\right)t=t^2-3+2x^2+2x+3\)
<=>\(t^2-\left(3x+1\right)+2x^2+2x=0\)
Có \(\Delta=\left(3x+1\right)^2-4\left(2x^2+2x\right)=x^2-2x+1=\left(x-1\right)^2\)
Nên \(\left[{}\begin{matrix}t=\dfrac{3x+1-x+1}{2}=x+1\\t=\dfrac{3x+1+x-1}{2}=2x\end{matrix}\right.\)
+, \(t=x+1\Leftrightarrow\sqrt{x^2+3}=x+1\Rightarrow x^2+3=x^2+2x+1\left(x\ge-1\right)\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\left(TM\right)\)
+, \(t=2x\Leftrightarrow\sqrt{x^2+3}=2x\Rightarrow x^2+3=4x^2\left(x\ge0\right)\Leftrightarrow3x^2-3=0\Leftrightarrow\left[{}\begin{matrix}x=1\left(TM\right)\\x=-1\left(L\right)\end{matrix}\right.\)
Vậy \(S=\left\{-1;1\right\}\)
gpt:
\(x^2-3x+1=-\frac{\sqrt{3}}{3}\sqrt{x^4+x^2+1}\)