Tính
B = \(\frac{3}{1.2.3}+\frac{3}{2.3.4}+...+\frac{3}{49.50.51}\)
Tính :
A = \(\frac{3}{1.3}+\frac{1}{3.5}+...+\frac{3}{19.20}\)
B = \(\frac{3}{1.2.3}+\frac{3}{2.3.4}+...+\frac{3}{49.50.51}\)
câu a phải là như z ms làm được bn ơi
A = \frac{3}{1.3}+\frac{1}{3.5}+...+\frac{3}{19.20}
\frac{3}{1.2.3}+\frac{3}{2.3.4}+...+\frac{3}{49.50.51}
câu a thấy kì kì sao đó nha
3/19.20 ===> sai oy
phải là 3/19.21
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+.......+\frac{1}{49.50.51}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{49.50.51}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.5}+...+\frac{1}{49.50}-\frac{1}{50.51}\)
\(=\frac{1}{2}-\frac{1}{50.51}\)
\(=\frac{1}{2}-\frac{1}{2550}=\frac{637}{1275}\)
Gọi A là tổng dãy phân số trên
Ta có :
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{49.50.51}\)
\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{49.50.51}\)
Ta thấy:
\(\frac{2}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3};\frac{2}{2.3.4}=\frac{1}{2.3}-\frac{1}{3.4};...;\frac{2}{49.50.51}=\frac{2}{49.50}-\frac{2}{50.51}\text{}\)
\(\Rightarrow2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{49.50}-\frac{1}{50.51}\)
\(\Rightarrow2A=\frac{1}{1.2}-\frac{1}{50.51}\)
\(\Rightarrow2A=\frac{1}{2}-\frac{1}{2550}\)
\(\Rightarrow2A=\frac{1275}{2550}-\frac{1}{2550}\)
\(\Rightarrow2A=\frac{637}{1275}\Rightarrow A=\frac{637}{1275}:2=\frac{637}{2550}\)
Vậy tổng dãy phân số trên là :\(\frac{637}{2550}\)
Chúc bạn học tốt !!! :D
tính tổng sau
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{49.50.51}\)
0 nhớ chắc chắn nhưng xem có bài nào giạng đấy 0 và giải hộ
tính tổng sau
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{49.50.51}\)
tính tổng sau
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{49.50.51}\)
giúp mình nha mình cần gấp
gọi A=1/1*2*3+1/2*3*4+...+1/49*50*51
2A=2(1/1*2*3+1/2*3*4+...+1/49*50*51)
2A=2/1*2*3+2/2*3*4+...+2/49*50*51
2A=1/1*2-1/2*3+1/2*3-1/3*4+...+1/49*50-1/50*51
2A=1/2-1/2550
2A=637/1275
A=637/1275:2
A=637/2550
qua bài trên ta có công thức \(\frac{1}{n\cdot\left(n+1\right)\cdot\left(n+2\right)}\)= \(\frac{1}{n\cdot\left(n+1\right)}\)-\(\frac{1}{\left(n+1\right)\cdot\left(n+2\right)}\)
lộn công thức là 2/n*(n+1)*(n+2)=1/n*(n+1)-1/(n+1)*(n+2) cho tui xin lỗi
mà tick nhé
\(Tính:\frac{3}{1.2.3}+\frac{3}{2.3.4}+\frac{3}{3.4.5}+....+\frac{3}{98.99.100}\)
Tính nhanh :
P = \(\frac{3}{1.2.3}+\frac{3}{2.3.4}+...+\frac{3}{8.9.10}\)
Tính
\(S=\frac{3}{1.2.3}+\frac{3}{2.3.4}+\frac{3}{3.4.5}+.....+\frac{3}{98.99.100}\)
\(S:3.2=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+....+\frac{2}{98.99.100}\)
\(\frac{1}{1.2}-\frac{1}{2.3}=\frac{2}{1.2.3}\)
\(\frac{1}{2.3}-\frac{1}{3.4}=\frac{2}{2.3.4}\)
Tương tự nhé ta có
\(\frac{2S}{3}=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...-\frac{1}{99.100}=\frac{1}{2}-\frac{1}{9900}=\frac{4949}{9900}\)
\(S=\frac{4949}{6600}\)
Tìm x : \(\frac{3}{1.2}+\frac{3}{2.3}+...+\frac{3}{99.100}-2x=\frac{12}{1.2.3}+\frac{12}{2.3.4}+...+\frac{12}{18.19.20}-3x\)
bạn ơi số cuối sau \(\frac{12}{18.19.20}\) là zì dậy bị che mất rồi mk k thấy