Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Thảo Nhi
Xem chi tiết
Nguyễn Huyền Trâm
24 tháng 5 2020 lúc 15:48

\(M= \dfrac{3^2}{2.5} +\dfrac{3^2}{5.8} +\dfrac{3^2}{8.11}+...+\dfrac{3^2}{98.101}\)

\(M= \) \( \dfrac{9}{2.5} +\dfrac{9}{5.8} +\dfrac{9}{8.11}+...+\dfrac{9}{98.101}\)

\(M=3(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+ \dfrac{3}{98.101})\)

\(M= 3(\dfrac{1}{2} -\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11})\)

\(M= 3(\dfrac{1}{2}-\dfrac{1}{11})\)

\(M=3(\dfrac{11}{22}- \dfrac{2}{22})\)

\(M=3.\dfrac{9}{22}\)

\(M=\dfrac{27}{22}\)

Linh Vi
Xem chi tiết
Nguyễn Hưng Phát
27 tháng 7 2018 lúc 12:02

\(\frac{5}{2.5}+\frac{5}{5.8}+......+\frac{5}{98.101}\)

\(=\frac{5}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+.........+\frac{3}{98.101}\right)\)

\(=\frac{5}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+........+\frac{1}{98}-\frac{1}{101}\right)\)

\(=\frac{5}{3}.\left(\frac{1}{2}-\frac{1}{101}\right)=\frac{5}{3}.\frac{99}{202}\)

\(=\frac{5.33}{202}=\frac{165}{202}\)

Su Kem
Xem chi tiết
Quốc Đạt
26 tháng 4 2017 lúc 17:26

Đề hình như bị sai ban ơi sửa lại

\(A=\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{92.95}\)

\(A=3\left(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{92.95}\right)\)

\(A=3.\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{92}-\dfrac{1}{95}\right)\)

\(A=\dfrac{1}{2}-\dfrac{1}{95}\)

\(A=\dfrac{93}{190}\)

\(B=\dfrac{2}{2.5}+\dfrac{2}{5.8}+\dfrac{2}{8.11}+...+\dfrac{2}{92.95}\)

\(3B=2\left(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{92.95}\right)\)

\(3B=2.\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{92}-\dfrac{1}{95}\right)\)

\(3B=2\left(\dfrac{1}{2}-\dfrac{1}{95}\right)\)

\(3B=2.\dfrac{93}{190}\)

\(3B=\dfrac{93}{95}\)

\(\Rightarrow B=\dfrac{31}{95}\)

 Hoàng Hà Linh
Xem chi tiết
FL.Han_
5 tháng 10 2020 lúc 16:08

\(A=\frac{5}{2.5}+\frac{5}{5.8}+\frac{5}{8.11}+...+\frac{5}{98.101}\)

\(=\frac{5}{2}-\frac{5}{5}+\frac{5}{5}-\frac{5}{8}+....+\frac{5}{98}-\frac{5}{101}\)

\(=\frac{5}{2}-\frac{5}{101}=\frac{495}{202}\)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
5 tháng 10 2020 lúc 16:12

\(\frac{5}{2\times5}+\frac{5}{5\times8}+\frac{5}{8\times11}+...+\frac{5}{98\times101}\)

\(=\frac{5}{3}\times\left(\frac{3}{2\times5}+\frac{3}{5\times8}+\frac{3}{8\times11}+...+\frac{3}{98\times101}\right)\)

\(=\frac{5}{3}\times\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{98}-\frac{1}{101}\right)\)

\(=\frac{5}{3}\times\left(\frac{1}{2}-\frac{1}{101}\right)\)

\(=\frac{5}{3}\times\frac{99}{202}=\frac{165}{202}\)

Khách vãng lai đã xóa
Phạm Hà Thuỷ
Xem chi tiết
Ngô Hải Nam
26 tháng 2 2023 lúc 18:29

a) đặt

 \(S=1+\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{99\cdot101}\\ 2S=2+\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{99\cdot101}\\ 2S=2+\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\\ 2S=2+1-\dfrac{1}{101}\\ 2S=\dfrac{302}{101}\\ S=\dfrac{151}{101}\)

b)

đặt

\(S=\dfrac{1}{2}+\dfrac{1}{2\cdot5}+\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+...+\dfrac{1}{98\cdot101}\\ 3S=\dfrac{3}{2}+\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{98\cdot101}\\ 3S=\dfrac{3}{2}+\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{98}-\dfrac{1}{101}\\ 3S=\dfrac{3}{2}+\dfrac{1}{2}-\dfrac{1}{101}\\ 3S=\dfrac{201}{101}\\ S=\dfrac{67}{101}\)

Thầy Hùng Olm
26 tháng 2 2023 lúc 18:34

\(2A-1=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)

\(2A-1=1-\dfrac{1}{101}=\dfrac{100}{101}\)

\(2A=\dfrac{201}{101}\Rightarrow A=\dfrac{201}{202}\)

Đỗ Châu Oanh
Xem chi tiết
Nguyễn Hưng Phát
7 tháng 8 2016 lúc 21:33

\(A=\frac{4}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+.........+\frac{3}{98.101}\right)\)

\(=\frac{4}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+............+\frac{1}{98}-\frac{1}{101}\right)\)

\(=\frac{4}{3}.\left(\frac{1}{2}-\frac{1}{101}\right)\)

\(=\frac{4}{3}.\frac{99}{202}\)

\(=\frac{66}{101}\)

Lê Hà Phương
7 tháng 8 2016 lúc 21:34

\(A=\frac{4}{2.5}+\frac{4}{5.8}+\frac{4}{8.11}+...+\frac{4}{98.101}\) 

\(\frac{4}{3}A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{98.101}\)

\(\frac{4}{3}A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{101}\) 

\(A=\left(\frac{1}{2}-\frac{1}{101}\right).\frac{3}{4}\) 

\(A=\frac{99}{202}.\frac{3}{4}=\frac{297}{808}\)

Lê Bảo Trâm
7 tháng 8 2016 lúc 21:36

\(A=\frac{4}{2.5}+\frac{4}{5.8}+\frac{4}{8.11}+...+\frac{4}{98.101}\)

\(\Rightarrow A=4\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+....+\frac{1}{98.101}\right)\)

\(\Rightarrow A=4\left[\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+....+\frac{1}{98}-\frac{1}{101}\right)\right]\)

\(\Rightarrow A=4\left[\frac{1}{3}\left(\frac{1}{2}-\frac{1}{101}\right)\right]\Rightarrow A=4\left(\frac{1}{3}.\frac{99}{202}\right)\Rightarrow A=4.\frac{33}{202}\)\(\Rightarrow A=\frac{66}{101}\)

Shu Korenai
Xem chi tiết
T.Ps
8 tháng 6 2019 lúc 9:03

#)Giải :

\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{98.101}\)

\(\Rightarrow3A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{99.101}\)

\(\Rightarrow3A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{99}-\frac{1}{101}\)

\(\Rightarrow3A=\frac{1}{2}-\frac{1}{101}\)

\(\Rightarrow3A=\frac{99}{202}\)

\(\Leftrightarrow A=\frac{33}{202}\)

Vũ Huỳnh Phong
8 tháng 6 2019 lúc 16:15

\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{101}\right)\)

\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{101}\right)\)

\(A=\frac{1}{3}.\frac{99}{202}=\frac{33}{202}\)

Nguyễn Thanh Tùng
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 4 2023 lúc 23:24

=1/2-1/5+1/5-1/8+1/8-1/11+1/11-1/14

=1/2-1/14

=7/14-1/14=6/14=3/7

Trần Phương Anh
Xem chi tiết
Ngân Nguyễn
5 tháng 8 2021 lúc 8:39

Chịu r

Khách vãng lai đã xóa