Given K is the midpoint of AB
If KA = 2x + 1 (cm)
BK = x + 5 (cm ) then AB = ...... (cm )
true or false
1, there is only one midpoint for any given line segment
2, if AB+BC=AD then B lies between A and D
3, if AB+BC=AC then B is the midpoint of AC
4, If C is the midpoint of AB then AC=BC
5, if B belongs to Ox, A belongs to Oy, Ox and Oy are opposite then O is the midpoint of AB
true or false
1, there is only one midpoint for any given line segment
2, if AB+BC=AD then B lies between A and D
3, if AB+BC=AC then B is the midpoint of AC
4, If C is the midpoint of AB then AC=BC
5, if B belongs to Ox, A belongs to Oy, Ox and Oy are opposite then O is the midpoint of AB
1: false
2: False
3: False
4: True
5: False
Given K is the midpoint IJ If KI= 9 cm then IJ = cm
Ghi kết quả thôi nhanh lên
K là trung điểm IJ => KI = KJ
=> KI + KJ = IJ
<=> 9 + 9 = 18 cm
Given that ABCD is a rectangle with AB = 12 cm, AD = 6 cm. M and N are respectively midpoint of segments BC and CD. Find the area of triangle AMN in square centimeters.
You have to draw the geometry yourself.
\(A_{ABCD}=AB.AD=12.6=72\left(cm^2\right)\)
M is the midpoint of segment BC so we have: \(BM=MC=\frac{BC}{2}=\frac{6}{2}=3\left(cm\right)\)
For the midpoint of CD is N, we also have: \(DN=NC=\frac{CD}{2}=\frac{12}{2}=6\left(cm\right)\)
We have:
\(A_{AMN}=A_{ABCD}-\left(A_{ABM}+A_{NCM}+A_{ADN}\right)\\ =72-\left(\frac{1}{2}.AB.BM+\frac{1}{2}.NC.MC+\frac{1}{2}AD.DN\right)\\ =72-\left(\frac{1}{2}.12.3+\frac{1}{2}.6.3+\frac{1}{2}.6.6\right)\\ =72-45\\ =27\left(cm^2\right)\)
Thusly, the area of triangle AMN in square centimeters is 27.
Given that ABCD is a rectangle with AB = 12 cm, AD = 6 cm. M and N are respectively midpoint of segments BC and CD. Find the area of triangle AMN in square centimeters.
Dịch: Cho ABCD là HCN có AB = 12cm, AD = 6 cm. M và N lần lượt là trung điểm của các cạnh BC và CD. Tính diện tích tam giác AMN với đơn vị cm2.
SABCD = \(AB\cdot AD=12\cdot6=72\left(cm^2\right)\)
SADN = \(\frac{AD\cdot DN}{2}=\frac{AD\cdot\frac{1}{2}CD}{2}=\frac{AD\cdot\frac{1}{2}AB}{2}=\frac{6\cdot\frac{1}{2}12}{2}=18\left(cm^2\right)\)
SABM = \(\frac{AB\cdot BM}{2}=\frac{AB\cdot\frac{1}{2}BC}{2}=\frac{AB\cdot\frac{1}{2}AD}{2}=\frac{12\cdot\frac{1}{2}6}{2}=18\left(cm^2\right)\)
SMNC = \(\frac{MC\cdot NC}{2}=\frac{\frac{1}{2}BC\cdot\frac{1}{2}CD}{2}=\frac{\frac{1}{2}AD\cdot\frac{1}{2}AB}{2}=\frac{\frac{1}{2}6\cdot\frac{1}{2}12}{2}=9\left(cm^2\right)\)
SABCD = SADN + SABM + SMNC + SAMN
\(\Leftrightarrow\)SAMN = SABCD - SADN - SABM - SMNC
\(\Rightarrow\) SAMN = 72 - 18 - 18 - 9
= 27 (cm2)
Let ABCD be a trapezoid with bases AB, CD and O be the intersection of AC and BD. If the areas of triangle OAB, triangle OCD are 16cm2, 40cm2respectively and M is the midpoint of BD, then the area of the triangle AMD is .........cm2.
Let ABCD be a trapezoid with bases AB, CD and O be the intersection of AC and BD. If the areas of triangle OAB, triangle OCD are 16cm2, 40cm2respectively and M is the midpoint of BD, then the area of the triangle AMD is .........cm2.
đựng đường cao 2 bên áp dụng 2 tam giác đồng dạng suy ra tỉ số diện tích
đáp án 22 cm2
Let ABCD be a trapezoid with bases AB, CD and O be the intersection of AC and BD. If the areas of triangle OAB, triangle OCD are 16cm2, 40cm2respectively and M is the midpoint of BD, then the area of the triangle AMD is .........cm2.
Bạn nào giúp mk vs!!!