Cho tam giác MNP vuông tại M, đường cao MH. Biết MH = 12cm và . Khi đó MN =... cm.
ta sử dụng hệ thức lượng trong tam giác vuông
\(\frac{1}{MN^2}+\frac{1}{MP^2}=\frac{1}{AH^2}\)
mà MN=3MP/4
they vào ta đc : \(\frac{1}{\left(\frac{3}{4}MP\right)^2}+\frac{1}{MP^2}=\frac{1}{12^2}\)
<=> \(\frac{16}{9MP^2}+\frac{1}{MP^2}=\frac{1}{12^2}\)
<==> \(\frac{25}{9MP^2}=\frac{1}{12^2}\)=>\(MP^2=\frac{12^2.15}{9}=240\)
=> MP=\(4\sqrt{15}\)
bài 10: gống cái trên :
tiếp : tính:\(NM=\frac{3}{4}MP=3\sqrt{15}\)
áp dungnj đl pita go ta có :
NP=\(\sqrt{MN^2+MP^2}=5\sqrt{15}\)
Cho tam giác MNP vuông tại M, đường cao AH, biết NH=4cm, HP=12cm. Tính MH, MN, MP.
Sửa đề: Đường cao MH
Áp dụng HTL:
\(MH^2=NH.HP\)
\(\Rightarrow MH=\sqrt{NH.HP}=\sqrt{4.12}=4\sqrt{3}\left(cm\right)\)
\(\left\{{}\begin{matrix}MN^2=NH.NP=4.\left(12+4\right)=64\\MP^2=HP.NP=12\left(12+4\right)=192\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}MN=8\left(cm\right)\\MP=8\sqrt{3}\left(cm\right)\end{matrix}\right.\)
cho tam giác MNP vuông tại M có MH là đường cao biết NP=5cm NH=1.8 cm Tính độ dài MN MH và tính góc N và P b, qua P vẽ đường cao song song với MN cắt MH tại D chứng minh MH . MD = PH . PN
b: Xét ΔPDM vuông tại P có PH là đường cao ứng với cạnh huyền MD, ta được:
\(MH\cdot MD=MP^2\left(1\right)\)
Xét ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:
\(PH\cdot PN=MP^2\left(2\right)\)
Từ (1) và (2) suy ra \(MH\cdot MD=PH\cdot PN\)
cho tam giác MNP vuông tại M kẻ đường cao MH, đường phân giác MK của góc HMP, kẻ đường cao KE vuông góc MP tại E. tính MN biết NP=12cm, KE=3cm
Câu 8. Cho tam giác MNP vuông tại M, đường cao MH, phân giác MD. Biết MN = 18 cm, MO = 24 cm. Độ dài NH, MH, HD là Gấp !!!
Sửa đề: MP=24cm
NP=căn 18^2+24^2=30cm
NH=MN^2/NP=18^2/30=324/30=10,8cm
MH=18*24/30=14,4cm
Câu 10. Cho tam giác MNP vuông tại M, đường cao MH, phân giác MD. Biết MN = 72 cm, MP = 96 cm. Độ dài NH, MH, HD là
Gấp !!!
(Tự vẽ hình)
- Xét △MNP vuông tại M, áp dụng định lí Pytago:
\(^{NM^2}\)+\(MP^2\)=\(NP^2\)
=\(72^2\)+\(96^2\)=\(NP^2\)
⇔\(NP^2\)=\(72^2\)+\(96^2\)=14400
⇔\(NP\)=\(\sqrt{14400}\)=120cm
- Xét △MNP vuông tại M, đường cao MH, theo hệ thức lượng ta có:
\(MN^2\)=\(NH.NP\)
\(72^2\)=\(NH.120\)
⇔\(NH\)=\(\dfrac{72^2}{120}\)=43,2 cm
- \(MH.NP\)=\(MP.MN\)
⇔ \(MH\)=\(\dfrac{MP.MN}{NP}\)=\(\dfrac{96.72}{120}\)=3,6cm
Cho tam giác MNP vuông tại M có MN=5cm MP=12cm kẻ đường cao MH(H thuộc NP)
a) chứng minh tam giác HNM Đồng dạng với tam giác MNP b)tính độ dài các đường thẳng NP MH c)trong MNP kẻ phân giác MD (D thuộc MN) Tam giác MDP kẻ phân giác DF(F thuộc MP) chứng minh EM/EN =DN/DP=FP/FM=1
Cho tam giác MNP vuông tại M đường cao MH. Biết NH = 1,8 cm; MH = 2,4cm. Tính diện tích của ∆MNP
Áp dụng hệ thức lượng trong tam giác vuông vào ΔNMP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:
\(MH^2=HN\cdot HP\)
\(\Leftrightarrow HP=\dfrac{2.4^2}{1.8}=3.2\left(cm\right)\)
Diện tích tam giác MNP là:
\(S_{MNP}=\dfrac{MH\cdot NP}{2}=\dfrac{2.4\cdot5}{2}=6\left(cm^2\right)\)
Áp dụng hệ thức trong tam giác vuông:
`MH^2 =NH.PH`
`=>PH=MH^2 : NH = 2,4^2 : 1,8=3,2(cm)`
`=> NP=NH+PH=5(cm)`
`=> S= 1/2 . MH .NP =6(cm^2)`
Cho tam giác MNP vuông tại M, đường cao MH. Biết NH = 5 cm, HP = 9 cm. Độ dài MH bằng: