Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
trịnh minh anh
Xem chi tiết
Thái Hưng Mai Thanh
17 tháng 3 2022 lúc 22:43

A

Tạ Ngọc Hiền	Mai
Xem chi tiết
Quốc Anh Nguyễn Lê
Xem chi tiết
Quốc Anh Nguyễn Lê
16 tháng 3 2022 lúc 18:17

nhanh giúp mình với đang cần gấp

Nguyễn Lê Phước Thịnh
16 tháng 3 2022 lúc 21:52

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

b: AH=12cm

c: Xét ΔAMH vuông tại M và ΔANH vuông tại N có

AH chung

\(\widehat{MAH}=\widehat{NAH}\)

Do đó: ΔAMH=ΔANH

Suy ra: AM=AN

d: Xét ΔABC có AM/AB=AN/AC

nên MN//BC

Bảo Trâm
Xem chi tiết
Nguyễn Thái Thịnh
19 tháng 2 2020 lúc 17:44

Hình vẽ: 

A B C H 5cm 9cm 4cm

Xét \(\Delta ACH\left(\widehat{H}=90^0\right)\)có: 

\(AC^2=AH^2+HC^2\)( định lý py-ta-go )

\(\Rightarrow5^2=4^2+HC^2\)

\(\Rightarrow HC^2=5^2-4^2\)

\(\Rightarrow HC^2=25-16\)

\(\Rightarrow HC^2=9\)

\(\Rightarrow HC=\sqrt{9}\)

\(\Rightarrow HC=3cm\)

Ta có: \(BH+HC=9cm\)

mà \(HC=3cm\left(cmt\right)\)

\(\Rightarrow BH=9-3=6cm\)

Xét \(\Delta AHB\left(\widehat{H}=90^0\right)\)có:
\(AB^2=AH^2+BH^2\)( định lý py-ta-go )

\(\Rightarrow AB^2=4^2+6^2\)

\(\Rightarrow AB^2=16+36\)

\(\Rightarrow AB^2=52\)

\(\Rightarrow AB=\sqrt{52}cm\)

Vậy độ dài cạnh AB là \(\sqrt{52}cm\)

Khách vãng lai đã xóa
Phạm Hà Chi
Xem chi tiết
Kim khánh ly
Xem chi tiết
Tuấn Anh
20 tháng 5 2020 lúc 21:55

Áp dụng định lí Py-ta-go vào tam giác ABH vuông tại H, ta có:

AH²+BH²=AB²

AH²=AB²−BH²

AH²=52−32

⇒AH²=16

⇒AH=4(cm)

Ta có:

BH+HC=BC

⇒HC=BC−BH

⇒HC=8−3

⇒HC=5(cm)

Áp dụng định lí Py-ta-go vào tam giác AHC vuông tại H, ta có:

AH²+HC²=AC²

42+52=AC²

⇒AC²=41

⇒AC=√41(cm)

Vậy HC = 5 cm, AC = √41 cm

#Tuyên#

Khách vãng lai đã xóa
Lê Hưng
Xem chi tiết
Quốc Huy
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 8 2021 lúc 21:26

Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=3^2+4^2=25\)

hay BC=5cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=1.8cm\\CH=3.2cm\\AH=2.4cm\end{matrix}\right.\)

Anh Thư
Xem chi tiết