cho tam giác ABC góc A=90 độ, AH vuông góc với BC ,AB = 4cm, AC = 9cm khi đó \(\frac{Shab}{Shac}=\)
Cho tam giác ABC vuông tại A, đường cao AH. Biết \(\dfrac{HB}{HC}=\) \(\dfrac{9}{16}\)
Tính \(\dfrac{AB}{AC}\)
Cho tam giác ABC vuông tại A Vẽ đường cao AH ,HB=9,HC=16 a) tìm các cặp tg đồng dạng b)chứng minh rằng AH^2=HB.HC c)tính AH,AB,AC
cho tam giác ABC vuông tại a đường cao AH a) chứng minh tam giác ABC ~ tam giác HBA từ đó suy ra AB^2=BH .BC b) cho BH=4cm CH=9cm tính AH,AB c) gọi F điểm tùy ý trên AC, đường thẳng qua H vuông góc HF cắt cạnh AB tại E chứng minh AE . CH=AH . FC d) xác định vị trí của F trên AC để đoạn FE có độ dài ngắn nhất
Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Biết BH=4cm,CH=9cm Chứng minh tam giác ABH đồng dạng với tam giác CBA từ đó suy ra AB^2=BH.BC Tính AB,AC đường phân giác BD cắt AH tại E(D thuộc AC) . Tính SEBH/SDBA và chứng minh EA/EH=DC/DA
Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HD vuông góc với AB, HE vuông góc AC. Biết AB= 4 cm, AC= 4 căn 3
Chứng Minh: S ade= S abc . (1-cos^2 B). sin^2 C
Cho tam giác ABC vuông tại A ( AB<AC), vẽ đường cao AH ( H thuộc BC). a) chứng minh tam giác ABC đồng dạng với tam giác HBA b) cho AB = 3cm ; AC = 4cm. tính BC, AH c) trên tia HC, lấy HD = HA. từ D vẽ đường thẳng song song với AH cắt AC tại E. chứng minh CE.CA=CD.CB d) chứng minh tam giác ABE cân
Cho tam giác ABC vuông tại A, AH là đường cao. Biết BH = 4cm, CH = 2cm.
a. Tính AB, AC
b. Lấy M, N là trung điểm của AC, HC. Chứng minh rằng: BH.HC = 4MN^2
c. Vẽ HD vuông góc AB, HE vuông góc với AC. Chứng minh rằng: DE^3 = BD.CE.BC
Cho tam giác ABC vuông tại A có AB = 3 cm AC = 4 cm , đường cao AH a, CM : tam giác ABC đồng dạng tam giác HBA từ đó suy ra ab² = BC . BH b , tính BC và BH c, Kẻ HE vuông góc AB , HF vuông góc AC Chứng minh AH . BH = BE.AC và tính độ dài BE