Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thảo Nguyễn
Xem chi tiết
titanic
Xem chi tiết
Thân Nguyễn Đức Mạnh
15 tháng 2 2017 lúc 14:06

A=0 nhé

Trà My
15 tháng 2 2017 lúc 15:34

a) \(\left|x-7\right|+\left|x+5\right|=\left|7-x\right|+\left|x+5\right|\ge\left|7-x+x+5\right|=12\)

Dấu "=" xảy ra khi \(-5\le x\le7\)

b) Đặt \(\left|2x-1\right|=t\left(t\ge0\right)\)

ta được \(t^2-3t+2=\left(t^2-2.\frac{3}{2}.x+\frac{9}{4}\right)-\frac{1}{4}=\left(t-\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

Dấu "=" xảy ra khi \(\left(t-\frac{3}{2}\right)^2=0\Leftrightarrow t-\frac{3}{2}=0\Leftrightarrow t=\frac{3}{2}\Leftrightarrow\left|2x-1\right|=\frac{3}{2}\)

<=>\(\orbr{\begin{cases}2x-1=-\frac{3}{2}\\2x-1=\frac{3}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-\frac{1}{2}\\2x=\frac{5}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{4}\\x=\frac{5}{4}\end{cases}}\)

Vậy...........

An Vy
Xem chi tiết
Phùng Minh Quân
22 tháng 7 2019 lúc 21:46

1) \(\frac{1}{2}=\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)\(\Leftrightarrow\)\(x+y\ge8\)

\(\frac{1}{2}=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}\)\(\Leftrightarrow\)\(xy=2\left(x+y\right)\ge16\)

\(A=\sqrt{x}+\sqrt{y}\ge2\sqrt[4]{xy}\ge2\sqrt[4]{16}=4\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=4\)

2) \(B=\sqrt{3x-5}+\sqrt{7-3x}\ge\sqrt{3x-5+7-3x}=\sqrt{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{7}{3}\end{cases}}\)

\(B=\sqrt{3x-5}+\sqrt{7-3x}\le\frac{3x-5+1+7-3x+1}{2}=2\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=2\)

Ngô Khánh Ngọc
Xem chi tiết
Đào Thu Hà
Xem chi tiết
Steolla
31 tháng 8 2017 lúc 12:21

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

đỗ hữu phương
Xem chi tiết
hagdgskd
Xem chi tiết
Kiều Vũ Linh
29 tháng 8 2023 lúc 10:51

\(A=\left(x+2\right)^2+\left(x+7\right)^2+33\)

Ta có:

\(\left(x+2\right)^2+\left(x+7\right)^2=\left(x+2\right)^2+\left(-x-7\right)^2\) \(\ge\left(x+2-x-7\right)^2=25\)

\(\Rightarrow\left(x+2\right)^2+\left(x+7\right)^2+33\ge25+33\)

\(\Rightarrow A\ge58\) \(\Leftrightarrow x=-2\) hoặc \(x=-7\)

 

Dang Tung
29 tháng 8 2023 lúc 10:54

\(A=\left(x+2\right)^2+\left(x+7\right)^2+33\\ =x^2+4x+4+x^2+14x+49+33\\ =2x^2+18x+86\\ =2\left(x^2+9x+43\right)\\ =2\left(x+\dfrac{9}{2}\right)^2+\dfrac{91}{2}\ge\dfrac{91}{2}\)

Dấu = xảy ra: \(x+\dfrac{9}{2}=0=>x=-\dfrac{9}{2}\)

Vậy min A = 91/2 tại x = -9/2

huy2005
Xem chi tiết
Nguyễn Trần Minh Anh
Xem chi tiết
Akai Haruma
20 tháng 6 2023 lúc 18:29

Lời giải:

$A=x(x-3)(x-4)(x-7)=[x(x-7)][(x-3)(x-4)]$

$=(x^2-7x)(x^2-7x+12)$

$=a(a+12)$ (đặt $x^2-7x=a$)

$=a^2+12a=(a+6)^2-36=(x^2-7x+6)^2-36\geq 0-36=-36$

Vậy $A_{\min}=-36$. Giá trị này đạt tại $x^2-7x+6=0$

$\Leftrightarrow (x-1)(x-6)=0$

$\Leftrightarrow x=1$ hoặc $x=6$