Lời giải:
$A=x(x-3)(x-4)(x-7)=[x(x-7)][(x-3)(x-4)]$
$=(x^2-7x)(x^2-7x+12)$
$=a(a+12)$ (đặt $x^2-7x=a$)
$=a^2+12a=(a+6)^2-36=(x^2-7x+6)^2-36\geq 0-36=-36$
Vậy $A_{\min}=-36$. Giá trị này đạt tại $x^2-7x+6=0$
$\Leftrightarrow (x-1)(x-6)=0$
$\Leftrightarrow x=1$ hoặc $x=6$